
CAN
NI-CANTM Hardware and
Software Manual

NI-CAN Hardware and Software Manual

October 2002 Edition
Part Number 370289E-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, China 86 21 6555 7838,
Czech Republic 02 2423 5774, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 01 42 96 427, Hong Kong 2645 3186, India 91 80 4190000,
Israel 03 6393737, Italy 02 413091, Japan 03 5472 2970, Korea 02 3451 3400, Malaysia 603 9596711,
Mexico 001 800 010 0793, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 22 3390 150, Portugal 210 311 210, Russia 095 238 7139, Singapore 65 6 226 5886,
Slovenia 3 425 4200, South Africa 11 805 8197, Spain 91 640 0085, Sweden 08 587 895 00,
Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send e-mail to techpubs@ni.com.

© 1996–2002 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The NI-CAN hardware is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective
during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, IMAQ™, LabVIEW™, National Instruments™, NI™, NI-CAN™, ni.com™, NI-DAQ™, NI-Motion™, and RTSI™ are trademarks of
National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

 Compliance

FCC/Canada Radio Frequency Interference Compliance

Determining FCC Class
The Federal Communications Commission (FCC) has rules to protect wireless communications from interference. The FCC
places digital electronics into two classes. These classes are known as Class A (for use in industrial-commercial locations only)
or Class B (for use in residential or commercial locations). Depending on where it is operated, this product could be subject to
restrictions in the FCC rules. (In Canada, the Department of Communications (DOC), of Industry Canada, regulates wireless
interference in much the same way.)
Digital electronics emit weak signals during normal operation that can affect radio, television, or other wireless products. By
examining the product you purchased, you can determine the FCC Class and therefore which of the two FCC/DOC Warnings
apply in the following sections. (Some products may not be labeled at all for FCC; if so, the reader should then assume these are
Class A devices.)
FCC Class A products only display a simple warning statement of one paragraph in length regarding interference and undesired
operation. Most of our products are FCC Class A. The FCC rules have restrictions regarding the locations where FCC Class A
products can be operated.
FCC Class B products display either a FCC ID code, starting with the letters EXN,
or the FCC Class B compliance mark that appears as shown here on the right.
Consult the FCC Web site at http://www.fcc.gov for more information.

FCC/DOC Warnings
This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the instructions
in this manual and the CE Marking Declaration of Conformity*, may cause interference to radio and television reception.
Classification requirements are the same for the Federal Communications Commission (FCC) and the Canadian Department
of Communications (DOC).
Changes or modifications not expressly approved by National Instruments could void the user’s authority to operate the
equipment under the FCC Rules.

Class A
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC
Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated
in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct
the interference at his own expense.

Canadian Department of Communications
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.
Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Class B
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the
FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can
be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of
the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

Canadian Department of Communications
This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.
Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Compliance to EU Directives
Readers in the European Union (EU) must refer to the Manufacturer’s Declaration of Conformity (DoC) for information*
pertaining to the CE Marking compliance scheme. The Manufacturer includes a DoC for most every hardware product except
for those bought for OEMs, if also available from an original manufacturer that also markets in the EU, or where compliance is
not required as for electrically benign apparatus or cables.
To obtain the DoC for this product, click Declaration of Conformity at ni.com/hardref.nsf/. This Web site lists the DoCs
by product family. Select the appropriate product family, followed by your product, and a link to the DoC appears in Adobe
Acrobat format. Click the Acrobat icon to download or read the DoC.

* The CE Marking Declaration of Conformity will contain important supplementary information and instructions for the user
or installer.

© National Instruments Corporation vii NI-CAN Hardware and Software Manual

Contents

About This Manual
How to Use the Manual Set ...xiii
Conventions Used in This Manual...xiv
Related Documentation..xiv

Chapter 1
Introduction

CAN Overview ..1-1
NI-CAN Hardware Overview..1-2
NI-CAN Software Overview ...1-3

MAX..1-4
Frame API ...1-4
Channel API ..1-4

RTSI Bus Overview...1-6
The RTSI Solution...1-6

Chapter 2
Installation and Configuration

Verify Installation of Your CAN Hardware ..2-1
Configure CAN Ports ..2-2
CAN Channels...2-3

LabVIEW Real-Time (RT) Configuration ..2-3
Tools ..2-4

Chapter 3
Developing Your Application

Choose Your Programming Language ..3-1
LabVIEW ..3-1
LabWindows/CVI..3-2
Visual C++ 6 ...3-2
Borland C/C++ ..3-3
Other Programming Languages...3-4

Choose Which API To Use..3-5

Contents

NI-CAN Hardware and Software Manual viii ni.com

Chapter 4
Using the Channel API

Choose Source of Channel Configuration... 4-1
Already Have a CAN Database File? ... 4-2
Application Uses a Subset of Channels?... 4-2
Import CAN Database into MAX ... 4-2
Access CAN Database within Application ... 4-3
User Must Create within Application?.. 4-3
Use Create Message Function in Application... 4-3
Create in MAX.. 4-4

Basic Programming Model.. 4-4
Init Start... 4-5
Read .. 4-6

sample rate = 0.. 4-6
sample rate > 0.. 4-6

Read Timestamped.. 4-7
Write.. 4-8

sample rate = 0.. 4-8
sample rate > 0.. 4-9

Clear .. 4-10
Additional Programming Topics ... 4-10

Get Names... 4-10
Synchronization .. 4-10
Set Property... 4-11

Chapter 5
Channel API for LabVIEW

Section Headings ... 5-1
List of VIs.. 5-2
CAN Clear.vi ... 5-4
CAN Clear with NI-DAQ.vi.. 5-6
CAN Clear Multiple with NI-DAQ.vi... 5-8
CAN Connect Terminals.vi ... 5-10
CAN Create Message.vi .. 5-15
CAN Disconnect Terminals.vi .. 5-20
CAN Get Names.vi.. 5-22
CAN Get Property.vi ... 5-25
CAN Initialize.vi ... 5-33
CAN Init Start.vi ... 5-36
CAN Read.vi ... 5-41
CAN Set Property.vi.. 5-49
CAN Start.vi .. 5-53

Contents

© National Instruments Corporation ix NI-CAN Hardware and Software Manual

CAN Stop.vi...5-55
CAN Sync Start with NI-DAQ.vi ..5-57
CAN Sync Start Multiple with NI-DAQ.vi ...5-60
CAN Write.vi...5-63

Chapter 6
Channel API for C

Section Headings ...6-1
Data Types ...6-2
List of Functions ..6-3
nctClear ..6-4
nctConnectTerminals ...6-5
nctCreateMessage ..6-10
nctDisconnectTerminals ..6-15
nctGetNames..6-17
nctGetNamesLength ..6-19
nctGetProperty ...6-21
nctInitialize ..6-27
nctInitStart ...6-30
nctRead ..6-34
nctReadTimestamped...6-37
nctSetProperty..6-40
nctStart ...6-43
nctStop ...6-44
nctWrite ...6-45

Chapter 7
Using the Frame API

Choose Which Objects To Use ..7-1
Using CAN Network Interface Objects...7-1
Using CAN Objects...7-2

Programming Model ..7-3
Step 1. Configure Objects..7-5
Step 2. Open Objects ...7-5
Step 3. Start Communication...7-5
Step 4. Communicate Using Objects...7-5

Step 4a. Wait for Available Data ..7-6
Step 4b. Read Data..7-6

Step 5. Close Objects...7-6
Additional Programming Topics ...7-7

RTSI ..7-7
Remote Frames..7-7

Contents

NI-CAN Hardware and Software Manual x ni.com

Using Queues .. 7-8
State Transitions.. 7-8
Empty Queues ... 7-8
Full Queues ... 7-9
Disabling Queues .. 7-9
Using the CAN Network Interface Object with CAN Objects 7-9
Detecting State Changes ... 7-11

Chapter 8
Frame API for LabVIEW

Section Headings ... 8-1
List of VIs.. 8-2
ncAction.vi .. 8-4
ncCloseObject.vi ... 8-7
ncConfigCANNet.vi.. 8-9
ncConfigCANNetLS.vi ... 8-13
ncConfigCANNetLS-RTSI.vi ... 8-18
ncConfigCANNetRTSI.vi ... 8-20
ncConfigCANObj.vi.. 8-24
ncConfigCANObjRTSI.vi ... 8-32
ncCreateOccur.vi ... 8-37
ncGetAttr.vi ... 8-41
ncGetHardwareInfo.vi ... 8-45
ncGetTimer.vi.. 8-50
ncOpenObject.vi .. 8-52
ncReadNet.vi ... 8-54
ncReadNetMult.vi ... 8-58
ncReadObj.vi ... 8-62
ncReadObjMult.vi ... 8-65
ncReset.vi .. 8-68
ncSetAttr.vi.. 8-70
ncWait.vi ... 8-72
ncWriteNet.vi .. 8-75
ncWriteObj.vi .. 8-78

Chapter 9
Frame API for C

Section Headings ... 9-1
Data Types... 9-2
List of Functions.. 9-3
ncAction .. 9-5
ncCloseObject.. 9-8

Contents

© National Instruments Corporation xi NI-CAN Hardware and Software Manual

ncConfig...9-9
ncCreateNotification ..9-27
ncGetAttribute ...9-31
ncGetHardwareInfo ...9-35
ncOpenObject ..9-39
ncRead ...9-41
ncReadMult..9-48
ncReset...9-50
ncSetAttribute ..9-51
ncStatusToString..9-52
ncWaitForState ..9-54
ncWrite...9-56

Appendix A
Troubleshooting and Common Questions

Appendix B
Cabling Requirements for High-Speed CAN

Appendix C
Cabling Requirements for Low-Speed CAN

Appendix D
Cabling Requirements for Dual-Speed CAN

Appendix E
RTSI Bus

Appendix F
Summary of the CAN Standard

Appendix G
Specifications

Appendix H
Technical Support and Professional Services

Contents

NI-CAN Hardware and Software Manual xii ni.com

Glossary

Index

© National Instruments Corporation xiii NI-CAN Hardware and Software Manual

About This Manual

This manual is a description of the National Instruments Controller Area
Network (CAN) hardware and NI-CAN software features as well as a
programming reference for VIs and functions in the NI-CAN software.

The authors of this manual assume you are already familiar with your
operating system.

How to Use the Manual Set
Use the CAN Hardware and NI-CAN Software for Windows Installation
Guide in the jewel case of your program CD to install and configure your
CAN hardware and the NI-CAN software. Use this manual to learn the
basics of NI-CAN as well as how to develop an application.

This manual contains specific, programmer-reference information about
each NI-CAN function and VI.

This manual also describes the features of the hardware. Unless otherwise
noted, this manual applies to the NI-CAN hardware products, which
include the following.

PCI-CAN

• PCI-CAN (high-speed; one port)

• PCI-CAN/2 (high-speed; two port)

• PCI-CAN/LS (low-speed, fault-tolerant; one port)

• PCI-CAN/LS2 (low-speed, fault-tolerant; two port)

PXI-846x

• PXI-8460 (low-speed, fault-tolerant; one or two port)

• PXI-8461 (high-speed; one or two port)

• PXI-8462 (dual-speed: port one high-speed, port two low-speed)

PCMCIA-CAN

• PCMCIA-CAN (high-speed; one port)

• PCMCIA-CAN/2 (high-speed; two port)

• PCMCIA-CAN/LS (low-speed, fault-tolerant; one port)

About This Manual

NI-CAN Hardware and Software Manual xiv ni.com

• PCMCIA-CAN/LS2 (low-speed, fault-tolerant; one port)

• PCMCIA-CAN/DS (dual-speed: one port high-speed, one port
low-speed, fault-tolerant)

Conventions Used in This Manual
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of
Digital Information—Controller Area Network (CAN) for High-Speed
Communication

• CAN Specification Version 2.0, 1991, Robert Bosch GmbH.,
Postfach 106050, D-70049 Stuttgart 1

About This Manual

© National Instruments Corporation xv NI-CAN Hardware and Software Manual

• CiA Draft Standard 102, Version 2.0, CAN Physical Layer for
Industrial Applications

• CompactPCI Specification, Revision 2.0, PCI Industrial Computers
Manufacturers Group

• DeviceNet Specification, Version 2.0, Open DeviceNet Vendor
Association

• PXI Specification, Revision 1.0, National Instruments Corporation

• LabVIEW Online Reference

• Measurement and Automation Explorer (MAX) Online Reference

• Microsoft Win32 Software Development Kit (SDK) Online Help

© National Instruments Corporation 1-1 NI-CAN Hardware and Software Manual

1
Introduction

This chapter provides an introduction to the Controller Area Network
(CAN) and the National Instruments products for CAN.

CAN Overview
The data frame is the fundamental unit of data transfer on a CAN network.
Figure 1-1 shows a simplified view of the CAN data frame.

Figure 1-1. Simplified CAN Data Frame

When multiple CAN devices transmit a frame at the same time, the
identifier (ID) resolves the collision. The highest priority ID continues, and
the lower priority IDs retry immediately afterward. The ISO 11898 CAN
standard specifies two ID formats: the standard format of 11 bits and the
extended format of 29 bits.

The ID is followed by a length code that specifies the number of data bytes
in the frame. The length ranges from 0 to 8 data bytes. The ID value
determines the meaning of the data bytes.

In addition to the data frame, the CAN standard specifies the remote frame.
The remote frame includes the ID, but no data bytes. A CAN device
transmits the remote frame to request that another device transmit the
associated data frame for the ID. In other words, the remote frame provides
a mechanism to poll for data.

The preceding information provides a simplified description of CAN
frames. The CAN frame format includes many other fields, such as for error
checking and acknowledgement. For more detailed information on the ISO
11898 CAN standard, refer to Appendix F, Summary of the CAN Standard.

Identifier Length Data

Chapter 1 Introduction

NI-CAN Hardware and Software Manual 1-2 ni.com

NI-CAN Hardware Overview
The National Instruments CAN hardware covered in this manual includes
the PCI-CAN, PCI-CAN/2, PCI-CAN/LS (low-speed CAN),
PCI-CAN/LS2, PCI-CAN/DS (dual-speed CAN), PCMCIA-CAN,
PCMCIA-CAN/2, PXI-8460 (low-speed: one or two port), PXI-8461
(high-speed: one or two port) and PXI-8462 (dual-speed: port one
high-speed, port two low-speed).

The PCI-CAN, PCI-CAN/LS and PCI-CAN/DS series cards are
completely software configurable and compliant with the PCI Local Bus
Specification. With a PCI-CAN, PCI-CAN/LS or PCI-CAN/DS series
card, you can make your PC-compatible computer with PCI Local Bus
slots communicate with and control CAN devices.

The PCMCIA-CAN series cards are Type II PC Cards that are completely
software configurable and compliant with the PCMCIA standards for
16-bit PC Cards. With a PCMCIA-CAN series card, you can make your
PC-compatible notebook with PCMCIA sockets communicate with and
control CAN devices.

The PXI-8460, PXI-8461, and PXI-8462 are software configurable
and compliant with the PXI Specification and CompactPCI Specification.
With the PXI-846x cards you can make your PXI or CompactPCI chassis
communicate with and control CAN devices.

The CAN hardware supports a wide variety of transfer rates up to 1 Mb/s.
CAN interfacing is accomplished using the Intel 82527 CAN controller
chip. The high-speed CAN physical layer fully conforms to the ISO 11898
physical layer specification for CAN and is optically isolated to 500 V.
The low-speed CAN physical layer conforms to the ISO 11898 physical
layer specification for CAN and is also optically isolated to 500 V.

The PCI-CAN and PXI-8461 series cards are available with two physical
connector types: DB-9 D-Sub and Combicon-style pluggable screw
terminals. Low-speed PCI-CAN/LS, PCI-CAN/DS, PXI-8460,
and PXI-8462 boards are available with DB-9 D-Sub connectors.
PCMCIA-CAN, PCMCIA-CAN/LS and PCMCIA-CAN/DS cables
include both a DB-9 D-Sub and a pluggable screw terminal.

The CAN physical layer on PCI-CAN, PXI-8460 and PXI-846x series
cards can be powered either internally (from the card) or externally (from
the bus cable power). The power source for the CAN physical layer for each
port is configured with a jumper.

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-CAN Hardware and Software Manual

There are four types of cables available for the PCMCIA-CAN cards:

• PCMCIA-CAN bus powered transceiver cables. The CAN physical
layer is powered externally (from the bus cable power).

• PCMCIA-CAN internally powered transceiver cables. The CAN
physical layer is powered internally (from the card).

• PCMCIA-CAN/LS cables. The low-speed CAN physical layer and
the V-BAT pin of the low-speed transceiver are powered internally.
This cable also requires that only the V–, CAN_L and CAN_H be
connected to the bus.

• PCMCIA-CAN/DS cables. The high-speed port (port 1) physical layer
is powered internally. The low-speed port (port 2) physical layer is
identical to the PCMCIA-CAN/LS cable.

The PXI-846x and PCI-CAN cards use the Real-Time System Integration
(RTSI) bus to solve the problem of synchronizing several functions across
multiple cards to a common trigger or timing event. For PCI-CAN,
the RTSI bus consists of the National Instruments RTSI bus interface and
ribbon cable to route timing and trigger signals between the CAN hardware
and National Instruments DAQ, IMAQ, NI-Motion, or additional CAN
hardware. For the PXI-846x, the RTSI bus is implemented by using the
National Instruments PXI trigger bus to route timing and trigger signals
between the CAN hardware and National Instruments DAQ, IMAQ,
NI-Motion, or additional CAN hardware. Although the PXI-846x series
cards with RTSI bus are available in a PXI chassis, there are important
issues to consider when using RTSI in a CompactPCI chassis.

Refer to Appendix E, RTSI Bus, for detailed information about the RTSI
interface. Also refer to the RTSI Bus Overview and The RTSI Solution
sections later in this chapter.

All of the CAN hardware uses the Intel 386EX embedded processor to
implement time-critical features provided by the NI-CAN software. The
CAN hardware communicates with the NI-CAN driver through on-card
shared memory and an interrupt.

NI-CAN Software Overview
The NI-CAN software provides full-featured Application Programming
Interfaces (APIs), plus tools for configuration and analysis within National
Instruments Measurement & Automation Explorer (MAX). The NI-CAN
APIs enable you to develop applications that are customized to your test
and simulation requirements.

Chapter 1 Introduction

NI-CAN Hardware and Software Manual 1-4 ni.com

MAX
The NI-CAN features within MAX enable you to:

• verify the installation of your NI-CAN hardware

• configure software properties for each CAN port

• create or import configuration information for the Channel API

• interact with your CAN network using various tools

For more information, refer to Chapter 2, Installation and Configuration.

Frame API
As described in the CAN Overview section, the frame is the fundamental
unit of data transfer on a CAN network. The NI-CAN Frame API provides
a set of functions to write and read CAN frames.

Within the Frame API, the data bytes of each frame are not interpreted, but
are transferred in their raw format. For example, you can transmit a data
frame by calling a write function with the ID, length, and array of data
bytes.

For more information, refer to Chapter 7, Using the Frame API.

Channel API
A typical CAN data frame contains multiple values encoded as raw fields.
Figure 1-2 shows an example set of fields for a 6-byte data frame.

Chapter 1 Introduction

© National Instruments Corporation 1-5 NI-CAN Hardware and Software Manual

Figure 1-2. Example of CruiseControl Message

Bytes 1 to 2 contain a CruiseCtrlSetSpeed field that represents a vehicle
speed in kilometers per hour (km/h). Most CAN devices do not transmit
values as floating-point units such as 115.6 km/h. Therefore, this field
consists of a 16-bit unsigned integer in which each increment represents
0.0039 km/h. For example, if the field contains the value 25000, that
represents (25000 * 0.0039) = 97.5 km/h.

Bytes 3 to 4 contain another unsigned integer VehicleSpeed that represents
speed in km/h. Bytes 0 and 5 contain various Boolean fields for which 1
indicates “on” and 0 indicates “off.”

When you use the NI-CAN Frame API to read CAN data frames, you must
write code in your application to convert each raw field to physical units
such as km/h. The NI-CAN Channel API enables you to specify this
conversion information at configuration-time instead of within your
application. This configuration information can be imported from Vector
CANdb files, or specified directly in MAX.

For each ID you read or write on the CAN network, you specify a number
of fields. For each field, you specify its location in the frame, size in bits,
and a formula to convert to/from floating-point units. In other words, you

Chapter 1 Introduction

NI-CAN Hardware and Software Manual 1-6 ni.com

specify the meaning of various fields in each CAN data frame. In NI-CAN
terminology, a data frame for which the individual fields are described is
called a message.

In other National Instruments software products such as NI-DAQ and
FieldPoint, an application reads or writes a floating-point value using a
channel, which is typically converted to/from a raw value in the
measurement hardware. The NI-CAN Channel API also uses the term
channel to refer to floating-point values converted to/from raw fields in
messages. In CAN products of other vendors, this concept is often referred
to as a signal. When a CAN message is received, NI-CAN converts the raw
fields into physical units, which you then obtain using the Channel API
read function. When you call the Channel API write function, you provide
floating-point values in physical units, which NI-CAN converts into raw
fields and transmits as a CAN message.

For more information, refer to Chapter 4, Using the Channel API.

RTSI Bus Overview
RTSI is an acronym for Real-Time System Integration. It is the National
Instruments timing bus that connects CAN and DAQ boards directly.
This is done via connectors on top of the PCI-CAN series boards, and the
PXI trigger bus on the PXI-846x series boards, for precise synchronization
of functions.

The RTSI Solution
A common problem with interface boards is that you cannot easily
synchronize several functions across multiple boards to a common trigger
or timing event. CAN boards use the RTSI bus to solve this problem.

For PCI-CAN series boards, the RTSI bus consists of connecting the
National Instruments RTSI bus interface with RTSI ribbon cable to route
timing and trigger signals between the CAN board and other National
Instruments RTSI-equipped hardware. Refer to Appendix E, RTSI Bus, for
detailed information about the PCI-CAN and AT-CAN series RTSI
interfaces.

For the PXI-846x series CAN boards, the RTSI bus consists of using the
National Instruments PXI trigger bus to route timing and trigger signals
between the PXI-846x series board and other National Instruments
RTSI-equipped PXI boards. Regarding the RTSI interface on your
PXI-846x series board, there are important issues to consider when using

Chapter 1 Introduction

© National Instruments Corporation 1-7 NI-CAN Hardware and Software Manual

it in a CompactPCI chassis. Refer to Appendix E, RTSI Bus, for detailed
information about the PXI-846x series RTSI interface.

For information on RTSI programming, refer to the Synchronization
section of Chapter 4, Using the Channel API, and the RTSI section in
Chapter 7, Using the Frame API.

© National Instruments Corporation 2-1 NI-CAN Hardware and Software Manual

2
Installation and Configuration

The Measurement & Automation Explorer (MAX) provides access to all
of your National Instruments products. Like other NI software products,
NI-CAN uses MAX as the centralized location for all configuration and
tools.

To launch MAX, select the Measurement & Automation shortcut on your
desktop, or within your Windows Programs menu under National
Instruments»Measurement & Automation.

For information on the NI-CAN software within MAX, consult the online
help within MAX.

A reference is located in the MAX Help menu under Help Topics»
NI-CAN.

View help for items in the MAX Configuration tree by using the built-in
MAX help pane. If this help pane is not shown on the far right, select the
Show/Hide button in the upper right.

View help for a dialog box by selecting the Help button in the window.

The following sections provide an overview of some common tasks you can
perform within MAX.

Verify Installation of Your CAN Hardware
Within the Devices & Interfaces branch of the MAX Configuration tree,
NI-CAN cards are listed along with other hardware in the local computer
system, as shown in Figure 2-1.

Chapter 2 Installation and Configuration

NI-CAN Hardware and Software Manual 2-2 ni.com

Figure 2-1. NI-CAN Cards Listed in MAX

If your NI-CAN hardware is not listed here, MAX is not configured to
search for new devices on startup. In order to search for the new hardware,
press the <F5> key.

To verify installation of your CAN hardware, right-click the CAN card,
then select Self-test. If the self-test passes, the card’s icon shows a
checkmark. If the self-test fails, the card’s icon shows an “X” mark, and the
Test Status in the right pane describes the problem. Refer to Appendix A,
Troubleshooting and Common Questions, for information on resolving
hardware installation problems.

Configure CAN Ports
The physical ports of each CAN card are listed under the card’s name.
To configure software properties for each port, right-click the port and
select Properties.

In the Properties dialog, you assign an interface name to the port, such as
CAN0 or CAN1. The interface name identifies the physical port within
NI-CAN APIs.

The Properties dialog also contains the default baud rate for MAX tools
and the Channel API.

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-3 NI-CAN Hardware and Software Manual

CAN Channels
Within the Data Neighborhood branch of the MAX Configuration tree,
the CAN Channels branch lists information for the NI-CAN Channel API,
as shown in Figure 2-2.

Figure 2-2. CAN Channels in MAX

The CAN Channels branch lists CAN messages for use with the Channel
API. A set of channels is specified for each message.

For information about creating information under CAN Channels, refer to
the Choose Source of Channel Configuration section of Chapter 4, Using
the Channel API.

LabVIEW Real-Time (RT) Configuration
LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming
with the power of real-time systems. When you use a National Instruments
PXI controller as a LabVIEW RT system, you can install a PXI CAN card
and use the NI-CAN APIs to develop real-time applications. For example,
you can simulate the behavior of a control algorithm within a CAN device,

Chapter 2 Installation and Configuration

NI-CAN Hardware and Software Manual 2-4 ni.com

using data from received CAN messages to generate outgoing CAN
messages with deterministic response times.

When you install the NI-CAN software, the installer checks for the
presence of the LabVIEW RT module. If LabVIEW RT exists, the NI-CAN
installer copies components for LabVIEW RT to your Windows system. As
with any other NI product for LabVIEW RT, you then download the
NI-CAN software to your LabVIEW RT system using the Remote Systems
branch in MAX. For more information, refer to the documentation for
LabVIEW RT.

After you have installed your PXI CAN cards and downloaded the NI-CAN
software to your LabVIEW RT system, you need to verify the installation.
Within the Tools menu in MAX, select NI-CAN»RT Hardware
Configuration. The RT Hardware Configuration tool provides features
similar to Devices & Interfaces on your local system. Use the RT
Hardware Configuration tool to self-test the CAN cards and assign an
interface name to each physical CAN port.

To use the Channel API on your LabVIEW RT system, you must also
download channel configuration information. Right-click the CAN
Channels heading, then select Send to RT System. This downloads all
information under CAN Channels to your LabVIEW RT system, so you
can execute the same LabVIEW VIs on your LabVIEW RT system as your
Windows system.

Tools
NI-CAN provides tools that you can launch from MAX.

• Bus Monitor—Displays statistics for raw CAN frames. This provides
a basic tool to analyze CAN network traffic. Launch this tool by
right-clicking a CAN interface (port).

• Test Panel—Read or write physical units for a CAN channel. This
provides a simple debugging tool to experiment with CAN channels.
Launch this tool by right-clicking a CAN channel.

• NI-Spy—Monitor function calls to the NI-CAN APIs. This tool helps
in debugging programming problems in your application. Launch this
tool from the MAX Tools menu.

• FP1300 Configuration—FieldPoint 1300 is the National Instruments
modular I/O product for CAN. If you have installed the software for
the FP1300 product, launch this tool by right-clicking a CAN interface
(port).

© National Instruments Corporation 3-1 NI-CAN Hardware and Software Manual

3
Developing Your Application

This chapter explains how to develop your application using the
NI-CAN APIs.

Choose Your Programming Language
The programming language you use for application development
determines how to access the NI-CAN APIs.

LabVIEW
The NI-CAN software supports LabVIEW version 6.0 and later. NI-CAN
support for LabVIEW RT requires version 6.0.3 or later.

NI-CAN functions and controls are available in the LabVIEW palettes. The
top level of the NI-CAN function palette contains the most commonly used
functions of the Channel API. Subpalettes contain the Frame API functions
and advanced Channel API functions.

The reference for each NI-CAN Channel API function is in Chapter 5,
Channel API for LabVIEW. The reference for each NI-CAN Frame API
function is in Chapter 8, Frame API for LabVIEW. To access a function’s
reference from within LabVIEW, press <Ctrl-H> to open the help window,
click on the NI-CAN function, and then follow the link.

The NI-CAN software includes a full set of examples for LabVIEW. These
examples teach basic NI-CAN programming as well as advanced topics.
The example help describes each example and includes a link you can use
to open the VI.

In LabVIEW 6.0, the NI-CAN example help is in Help»Examples»Other
NI Products»Controller Area Network (CAN).

In LabVIEW 6.1, the NI-CAN example help is in Help»Find Examples»
Hardware Input and Output»CAN.

Chapter 3 Developing Your Application

NI-CAN Hardware and Software Manual 3-2 ni.com

LabWindows/CVI
The NI-CAN software supports LabWindows/CVI version 5.5 and later.

Within LabWindows/CVI, the NI-CAN function panel is in
Libraries»NI-CAN. Like other LabWindows/CVI function panels, the
NI-CAN function panel provides help for each function and the ability to
generate code.

The reference for each NI-CAN Channel API function is in Chapter 6,
Channel API for C. The reference for each NI-CAN Frame API function is
in Chapter 9, Frame API for C. You can access each function’s reference
directly from within the function panel.

The header file for both NI-CAN APIs is nican.h. The library for both
NI-CAN APIs is nican.lib.

The NI-CAN software includes a full set of examples for
LabWindows/CVI. The NI-CAN examples are installed in the
LabWindows/CVI directory under samples\nican.

Each example provides a complete LabWindows/CVI project (.prj file).
A description of each example is provided in comments at the top of the
.c file.

Visual C++ 6
The NI-CAN software supports Microsoft Visual C/C++ version 6.

The header file and library for Visual C/C++ 6 are in the MS Visual C
folder of the NI-CAN folder. The typical path to this folder is \Program
Files\National Instruments\NI-CAN\MS Visual C.

To use either NI-CAN API, include the nican.h header file in your code,
then link with the nicanmsc.lib library file.

For C applications (files with .c extension), include the header file by
adding a #include to the beginning of your code, such as:

#include "nican.h"

Chapter 3 Developing Your Application

© National Instruments Corporation 3-3 NI-CAN Hardware and Software Manual

For C++ applications (files with .cpp extension), define _cplusplus
before including the header, such as:

#define _cplusplus

#include "nican.h"

The _cplusplus define enables the transition from C++ to the C language
NI-CAN functions.

The reference for each NI-CAN Channel API function is in Chapter 6,
Channel API for C. The reference for each NI-CAN Frame API function is
in Chapter 9, Frame API for C.

You can find examples for the C language in the MS Visual C subfolder
of the NI-CAN folder. Each example is in a separate folder. A description
of each example is in comments at the top of the .c file.

At the command prompt, after setting MSVC environment variables (such
as with MS vcvars32.bat), you can build each example using a
command such as:

cl –I.. singin.c ..\nicanmsc.lib

Borland C/C++
The NI-CAN software supports Borland C/C++ version 5 and later.

The header file and library for Visual C/C++ 6 are in the Borland C folder
of the NI-CAN folder. The typical path to this folder is \Program
Files\National Instruments\NI-CAN\Borland C.

To use either NI-CAN API, include the nican.h header file in your code,
then link with the nicanbor.lib library file.

For C applications (files with .c extension), include the header file by
adding a #include to the beginning of your code, such as:

#include "nican.h"

For C++ applications (files with .cpp extension), define _cplusplus
before including the header, such as:

#define _cplusplus

#include "nican.h"

The _cplusplus define enables the transition from C++ to the C language
NI-CAN functions.

Chapter 3 Developing Your Application

NI-CAN Hardware and Software Manual 3-4 ni.com

The reference for each NI-CAN Channel API function is in Chapter 6,
Channel API for C. The reference for each NI-CAN Frame API function is
in Chapter 9, Frame API for C.

You can find examples for the C language in the Borland C subfolder of
the NI-CAN folder. Each example is in a separate folder. A description of
each example is in comments at the top of the .c file.

Other Programming Languages
The NI-CAN software does not provide formal support for programming
languages other than those described in the preceding sections.
Nevertheless, you may find libraries and examples for other programming
languages on the National Instruments Web site, ni.com.

If your programming language provides a mechanism to call a Dynamic
Link Library (DLL), you can create your own code to call NI-CAN
functions. All functions for the Channel API and Frame API are in
nican.dll.

If your programming language supports the Microsoft Win32 APIs, you
can load pointers to NI-CAN functions in your application. The following
text demonstrates use of the Win32 functions for C/C++ environments
other than Visual C/C++ 6. For more detailed information, refer to
Microsoft documentation.

The following C language code fragment shows how to call Win32
LoadLibrary to load the NI-CAN Channel API’s DLL:

#include <windows.h>

#include "nican.h"

HINSTANCE NicanLib = NULL;

NicanLib = LoadLibrary("nican.dll");

Next, your application must call the Win32 GetProcAddress function to
obtain a pointer to each NI-CAN function that your application will use.
For each NI-CAN function, you must declare a pointer variable using the
function’s prototype. For the prototypes of each NI-CAN function, refer to
the C language chapters in this manual.

static nctTypeStatus (NCT_FUNC * PnctInitStart)

(const str TaskList, i32 Interface, i32 Direction,

f64 SampleRate, nctTypeTaskRef * TaskRef);

Chapter 3 Developing Your Application

© National Instruments Corporation 3-5 NI-CAN Hardware and Software Manual

static nctTypeStatus (NCT_FUNC * PnctRead)

(nctTypeTaskRef TaskRef, u32 NumberOfSamplesToRead,

nctTypeTimestamp * StartTime, nctTypeTimestamp *

DeltaTime, f64 * SampleArray, u32 *

NumberOfSamplesReturned);

static nctTypeStatus (NCT_FUNC * PnctClear)

(nctTypeTaskRef TaskRef);

PnctInitStart = (nctTypeStatus (NCT_FUNC *)

(const str, i32, i32, f64, nctTypeTaskRef *))

GetProcAddress(NicanLib, (LPCSTR)"nctInitStart");

PnctRead = (nctTypeStatus (NCT_FUNC *)

(nctTypeTaskRef, u32, nctTypeTimestamp *,

nctTypeTimestamp *, f64 *, u32 *))

GetProcAddress(NicanLib, (LPCSTR)"nctRead");

PnctClear = (nctTypeStatus (NCT_FUNC *)

(nctTypeTaskRef))

GetProcAddress(NicanLib, (LPCSTR)"nctClear");

Your application must de-reference the pointer to call the NI-CAN
function, as shown by the following code:

nctTypeStatus status;

nctTypeTaskRef TaskRef;

status = (*PnctInitStart)("mychannel1, mychannel2", 0,

nctModeInput, 1000.0, &TaskRef);

Before exiting your application, you must unload the NI-CAN DLL as
follows:

FreeLibrary(NicanLib);

Choose Which API To Use
For a given NI-CAN interface such as CAN0, you can use only one API at
a time. Therefore, for new application development, you need to decide
which API to use.

For example, if you have one application that uses the Channel API and
another application that uses the Frame API, you cannot use CAN0 with
both at the same time. As an alternative, you can connect CAN0 and CAN1
to the same network, then use CAN0 with one application and CAN1 with
the other, if you have a 2-port CAN card. As another alternative, you can

Chapter 3 Developing Your Application

NI-CAN Hardware and Software Manual 3-6 ni.com

use CAN0 in both applications, but run each application at a different time
(not simultaneously).

Because the Channel API provides access to the CAN network in
easy-to-use physical units, it is recommended over the Frame API for
customers who are getting started with NI-CAN.

Nevertheless, because the Frame API provides lower-level access to the
CAN network, there are a few reasons why you might want to use it over
the Channel API:

• You are continuing with an application developed with NI-CAN
version 1.6 or earlier. The Frame API is compatible with such code.

• You need to implement a command/response protocol in which you
send a command to the device, and then the device replies by sending
a response. Command/response protocols typically use a fixed pair of
IDs for each device, and the ID does not determine the meaning of the
data bytes.

• Your devices require use of remote frames. The Channel API does not
provide support for remote frames, but the Frame API has extensive
features to transmit and receive remote frames. For more information,
refer to the Remote Frames section of Chapter 7, Using the Frame
API.

• The Frame API provides RTSI features that are lower level than the
synchronization features of the Channel API. If you have advanced
requirements for synchronizing CAN and DAQ cards, you may need to
use the Frame API. For more information, refer to the RTSI section of
Chapter 7, Using the Frame API.

© National Instruments Corporation 4-1 NI-CAN Hardware and Software Manual

4
Using the Channel API

This chapter helps you get started with the Channel API.

Choose Source of Channel Configuration
The first step in using the Channel API is to create the channel
configuration for your applications. This channel configuration describes
how the NI-CAN software converts raw data in messages to/from the
physical units of each channel.

The NI-CAN software provides various methods to create the channel
configuration. The flowchart in Figure 4-1 shows a process you can use to
decide the source of your channel configuration. A description of each step
in the decision process follows the flowchart.

Figure 4-1. Decision Process for Choosing Source of Channel Configuration

Import CAN
Database
into MAX

Access CAN
Database

Within
Application

Use Create
Message

Function in
Application

Create
in

MAX

Yes No

YesYes No No

Already have
a CAN database

on file?

Application
uses a subset
of channels?

User must
create within
application?

Chapter 4 Using the Channel API

NI-CAN Hardware and Software Manual 4-2 ni.com

Already Have a CAN Database File?
If you have a CAN database file, the channel configuration has already
been created using a tool such as Vector’s CANdb Editor. You can use each
signal name in the CAN database as a channel name in the NI-CAN
Channel API.

If you answer yes, refer to the Application Uses a Subset of Channels?
section. If you answer no, refer to the User Must Create within
Application? section.

Application Uses a Subset of Channels?
If your CAN database file contains a large number of channel descriptions
(1,000 or more), does your application use only a subset of these channels
(100 or less)? Importing the channels into MAX provides many benefits,
but managing the transfer of large amounts of data from CAN databases
can be cumbersome. For example, if the large CAN database file is updated
periodically, you need to ensure that the changes are reflected in MAX after
each update.

If you answer yes, refer to the Import CAN Database into MAX section.
If you answer no, refer to the Access CAN Database within Application
section.

Import CAN Database into MAX
The benefits of importing channels into MAX include:

• You can initialize the channel name alone within the Channel API.
No path to the CAN database file is required.

• You can use the Test Panel in MAX to read and write the channels.

You can download the channel configuration to a LabVIEW RT system
using Send to RT System.

To import channel configurations from a Vector CANdb file into MAX,
right-click the CAN Channels heading, then select Import from CANdb
File. Use shift-click to select multiple channels, and then select Import.
If you need to select another set, you can select the channels and then
Import again. When you are finished with the import, select Done to return
to MAX.

Chapter 4 Using the Channel API

© National Instruments Corporation 4-3 NI-CAN Hardware and Software Manual

Access CAN Database within Application
To access the CAN database within your application, you must initialize
the channel name with the file path as a prefix. For example, if you are
using a channel named EngineRPM in the C:\DBC_Files\
Prototype.DBC file, you pass the following name to the Init Start
function:

C:\DBC_Files\Prototype.DBC::EngineRPM

For more information, refer to the description of the Init Start function in
the Channel API reference chapters.

If you are using a LabVIEW RT system, you must copy the CAN database
file to the hard drive of that system, then access that file path within your
application.

User Must Create within Application?
Are you developing an application that another person will use, and that
person must create the channel configuration using the application itself?

If you answer yes, refer to the Use Create Message Function in Application
section.

If you answer no, you create the channel configuration within MAX. You
can save the MAX channel configuration to a file, so this method does not
prevent you from deploying your application for use by others. For more
information, refer to the Create in MAX section.

Use Create Message Function in Application
The Create Message function (CAN Create Message in LabVIEW and
nctCreateMessage in other languages) takes inputs for a single message
configuration, then one or more channel configurations. By using Create
Message to create the channel configurations, your application is entirely
self contained, not depending on MAX or a CAN database file.

The inputs to Create Message are relatively advanced for many users. Use
of MAX or a CAN database helps to isolate the application end user from
the specifics of CAN message encoding.

Chapter 4 Using the Channel API

NI-CAN Hardware and Software Manual 4-4 ni.com

Create in MAX
To create channel configurations within MAX, right-click the CAN
Channels heading, then select Create Message. Enter the message
properties, then select OK. Right-click the message name, then select
Create Channel. Enter the channel properties, then select OK. Select
Create Channel again for each channel contained in the message.

To save channel configurations to a file, right-click the CAN Channels
heading, then select Save Channel Configuration. The resulting NI-CAN
database uses file extension .ncd. You can access the NI-CAN database
using the Init Start function just like any other CAN database. By simply
installing the NI-CAN database file along with your application, you can
deploy your application to a variety of users.

Basic Programming Model
When you use the Channel API, the first step is to initialize a list of
channels with the same direction, such as input or output. You can then read
or write this list of channels as a unit. The term task refers to a list of
channels you read or write together. A common use of the task concept is
to read/write all channels of a message.

The diagram in Figure 4-2 describes the basic programming model for the
NI-CAN Channel API. Within your application, you repeat this basic
programming model for each task. The diagram is followed by a
description of each step in the model.

Figure 4-2. Basic Programming Model for Channel API

Init Start

Write

Clear

Read
Read

Timestamped

Mode = Input Mode = Output Mode = Timestamped Input

Chapter 4 Using the Channel API

© National Instruments Corporation 4-5 NI-CAN Hardware and Software Manual

Init Start
The Init Start function initializes a list of channels as a single task, then
starts communication for that task.

The Init Start function uses the following input parameters:

• channel list—Specifies the list of channels for the task, with one string
for each channel.

• interface—Specifies the CAN interface to use for the task. The
interface is an enumeration in which 0 specifies CAN0, 1 specifies
CAN1, and so on. The baud rate is taken from the interface’s properties
in MAX.

• mode—Specifies the I/O mode to use for the task. This determines the
direction of data transfer for the task (that is, Input or Output). It also
determines the type of Read or Write function you use with the task.
For more information, refer to the following sections.

• sample rate—Specifies the rate of sampling for input and output
modes. The sample rate is specified in Hertz (samples per second).
For more information, refer to the Read and Write sections.

The Init Start function simply calls the Initialize function followed by the
Start function. This provides an easy way to start a list of channels.

There are a few scenarios in which you cannot use Init Start:

• Set Property—If you need to set properties for the task, you must call
Initialize, Set Property, and Start in sequence. For example, use Set
Property if you need to specify the baud rate for the interface within
your application. For more information, refer to the Set Property
section.

• Synchronization—If you need to synchronize multiple cards, you
must call Initialize, then the appropriate functions to synchronize and
start the cards. For more information, refer to the Synchronization
section.

• Create Message—If you need to create channel configurations within
your application, you must call Create Message and Start in sequence.
For assistance is deciding whether Create Message is appropriate for
your application, refer to the Choose Source of Channel Configuration
section.

The Init Start function is CAN Init Start in LabVIEW and nctInitStart
in other languages.

Chapter 4 Using the Channel API

NI-CAN Hardware and Software Manual 4-6 ni.com

Read
If the mode of Init Start is Input, your application must call the Read
function to obtain floating-point samples. Your application typically calls
Read in a loop until done.

The Read function is CAN Read in LabVIEW (all types that don’t end in
Time & Dbl) and nctRead in other languages.

The behavior of Read depends on the initialized sample rate:

sample rate = 0
Read returns a single sample from the most recent message(s) received
from the network. One sample is returned for every channel in the Init
Start list.

Figure 4-3 shows an example of Read with sample rate = 0. A, B, and C
represent messages for the initialized channels. If no message is received
since the start of the application, the Default Value in MAX (def) is
returned, along with a warning.

Figure 4-3. Example of Read with sample rate = 0

sample rate > 0
Read returns an array of samples for every channel in the Init Start list.
Each time the clock ticks at the specified rate, a sample from the most
recent message(s) is inserted into the arrays. In other words, the samples are
repeated in the array at the specified rate until a new message is received.
By using the same sample rate with NI-DAQ Analog Input channels, you
can compare CAN and DAQ samples over time.

Start

Read Read Read

def A C

A B C

Chapter 4 Using the Channel API

© National Instruments Corporation 4-7 NI-CAN Hardware and Software Manual

Figure 4-4 shows an example of Read with sample rate > 0. A, B, and C
represent messages for the initialized channels. <delta−t> represents the
time between samples as specified by the sample rate. def represents the
Default Value in MAX.

Figure 4-4. Example of Read with sample rate > 0

Read Timestamped
If the Init Start mode is Timestamped Input, your application must call the
Read Timestamped function to obtain floating-point samples. Your
application typically calls Read Timestamped in a loop until done.

The Read Timestamped function returns samples that correspond to
messages received from network. For each message, an associated sample
is returned along with a timestamp that specifies when the message arrived.
An array of timestamped samples is returned for every channel in the Init
Start list.

The Read Timestamped function is CAN Read in LabVIEW (types that
end in Time & Dbl) and nctReadTimestamped in other languages.

Figure 6-5 shows an example of Read Timestamped. A, B, and C represent
messages for the initialized channels. At, Bt, and Ct represent the times
when each message was received.

Start

Read

def A C

A B C

def def def A A A A B B B C C

∆t

Chapter 4 Using the Channel API

NI-CAN Hardware and Software Manual 4-8 ni.com

Figure 4-5. Example of Read Timestamped

Write
If the Init Start mode is Output, your application must call the Write
function to output floating-point samples. Your application typically calls
Write in a loop until done.

The Write function is CAN Write in LabVIEW and nctWrite in other
languages.

The behavior of Write depends on the initialized sample rate:

sample rate = 0
Write transmits a message immediately on the network. The samples
provided to write are used to form the message’s data bytes. One sample
must be specified for every channel in the Init Start list.

Figure 4-6 shows an example of Write with sample rate = 0. A, B, C and D
represent messages for the initialized channels. For each Write, the
associated messages are transmitted as quickly as possible.

Start

Read Timestamped

A C

A B C

B

At Bt Ct

Chapter 4 Using the Channel API

© National Instruments Corporation 4-9 NI-CAN Hardware and Software Manual

Figure 4-6. Example of Write with sample rate = 0

sample rate > 0
You provide an array of samples for every channel in the Init Start list. Each
time the clock ticks at the specified rate, the next message is transmitted.
Each message uses the next sample from the array(s) to form the message’s
data bytes. In other words, the samples from the array are transmitted
periodically onto the network. By using the same sample rate with NI-DAQ
Analog Output channels, you can output synchronized CAN and DAQ
samples over time.

Figure 4-7 shows an example of Write with sample rate > 0. A, B, C and D
represent messages for the initialized channels. <delta-t> represents the
time between message transmission as specified by the sample rate.

Figure 4-7. Example of Write with sample rate > 0

Start

A B C

Write

A B

D

Write

C D

Start

A B C

Write

A B

D

Write

C D

∆t

Chapter 4 Using the Channel API

NI-CAN Hardware and Software Manual 4-10 ni.com

Clear
The Clear function stops communication for the task, then clears the
configuration.

For every task that you initialize, you must call Clear prior to exiting your
application.

The Clear function is CAN Clear in LabVIEW and nctClear in other
languages.

Additional Programming Topics
The following sections provide information you can use to extend the basic
programming model.

Get Names
If you are developing an application that another person will use, you may
not want to specify a fixed channel list in your application. Ideally, you
want your end-user to select the channels of interest from user interface
controls, such as list boxes.

The Get Names function queries MAX or a CAN database and returns a list
of all channels in that database. You can use this list to populate
user-interface controls. Your end-user can then select channels from these
controls, avoiding the need to type each name using the keyboard. Once the
user makes his selections, your application can pass the resulting list to Init
Start.

The Get Names function is CAN Get Names in LabVIEW and
nctGetNames in other languages.

Synchronization
The NI-CAN Channel API uses RTSI to synchronize specific functional
units on each card. For CAN cards, the functional unit is the interface
(port). For DAQ cards, the functional unit is a specific measurement such
as Analog Input or Analog Output. Each function routes two signals over
the RTSI connection:

• timebase—This is a common clock shared by both cards. The shared
timebase ensures that sampling does not drift. The timebase applies to
all functional units on the card.

Chapter 4 Using the Channel API

© National Instruments Corporation 4-11 NI-CAN Hardware and Software Manual

• start trigger—This signal is sent from one functional unit to the other
functional unit when sampling starts. The shared start trigger ensures
that both units start simultaneously.

Set Property
The Init Start function uses interface and channel configuration as specified
in MAX or the CAN database file. If you need to change this configuration
within your application, you cannot use Init Start, because most properties
cannot be changed while the task is running.

For example, to set the baud rate for the interface within your application,
use the following calling sequence:

• Initialize the task as stopped. The Initialize function is CAN Initialize
in LabVIEW and nctInitialize in other languages.

• Use Set Property to specify the new value for the baud rate property.
The Set Property function is CAN Set Property in LabVIEW and
nctSetProperty in other languages.

• Start the task with the Start function. The Start function is CAN Start
in LabVIEW and nctStart in other languages.

After the task is started, you may need to change properties again. To
change properties within the application, use the Stop function to stop the
task, Set Property to change properties, and then Start the task again.

You can also use the Get Property function to get the value of any property.
The Get Property function returns values whether the task is running or not.

© National Instruments Corporation 5-1 NI-CAN Hardware and Software Manual

5
Channel API for LabVIEW

This chapter lists the LabVIEW VIs for the NI-CAN Channel API and describes the format,
purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically.

Unless otherwise stated, each NI-CAN VI suspends execution of the calling thread until it
completes.

Section Headings
The following are section headings found in the Channel API for LabVIEW VIs.

Purpose
Each VI description includes a brief statement of the purpose of the VI.

Format
The format section describes the format of each VI.

Input and Output
The input and output parameters for each VI are listed.

Description
The description section gives details about the purpose and effect of each VI.

Chapter 5 Channel API for LabVIEW — List of VIs

NI-CAN Hardware and Software Manual 5-2 ni.com

List of VIs
The following table is an alphabetical list of the NI-CAN VIs for the Channel API.

Table 5-1. Channel API for LabVIEW VIs

Function Purpose

CAN Clear Stop communication for the task and then clear the
configuration.

CAN Clear with NI-DAQ Stop and clear the CAN task and the NI-DAQ task
synchronized with CAN Sync Start with NI-DAQ.vi.

CAN Clear Multiple with
NI-DAQ

Stop and clear the list of CAN tasks and the list of
NI-DAQ tasks synchronized with CAN Sync Start
Multiple with NI-DAQ.vi.

CAN Connect Terminals Connect terminals in the CAN hardware.

CAN Create Message Create a message configuration and associated channel
configurations within your LabVIEW application.

CAN Disconnect Terminals Disconnect terminals in the CAN hardware.

CAN Get Names Get an array of CAN channel names or message names
from MAX or a CAN database file.

CAN Get Property Get a property for the task, or a single channel within
the task. The poly VI selection determines the property
to get.

CAN Initialize Initialize a task for the specified channel list.

CAN Init Start Initialize a task for the specified channel list, then start
communication.

CAN Read Read samples from a CAN task initialized as input.
Samples are obtained from received CAN messages.
The poly VI selection determines the data type to read.

CAN Set Property Set a property for the task, or a single channel within
the task. The poly VI selection determines the property
to set.

CAN Start Start communication for the specified task.

CAN Stop Stop communication for the specified task.

Chapter 5 Channel API for LabVIEW — List of VIs

© National Instruments Corporation 5-3 NI-CAN Hardware and Software Manual

CAN Sync Start with
NI-DAQ

Synchronize and start the specified CAN task and
NI-DAQ task.

CAN Sync Start Multiple
with NI-DAQ

Synchronize and start the specified list of multiple
CAN tasks and NI-DAQ tasks. This is a more complex
implementation of CAN Sync Start with NI-DAQ.vi
that supports multiple CAN and NI-DAQ hardware
products.

CAN Write Write samples to a CAN task initialized as Output.
(Refer to the mode parameter of CAN Init Start.vi.)
Samples are placed into transmitted CAN messages.
The poly VI selection determines the data type to write.

Table 5-1. Channel API for LabVIEW VIs (Continued)

Function Purpose

Chapter 5 Channel API for LabVIEW — CAN Clear.vi

NI-CAN Hardware and Software Manual 5-4 ni.com

CAN Clear.vi

Purpose
Stop communication for the task and then clear the configuration.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. Unlike other VIs, this VI will
execute when status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Channel API for LabVIEW — CAN Clear.vi

© National Instruments Corporation 5-5 NI-CAN Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN Clear VI must always be the final NI-CAN VI called for each task. If you do not
use the CAN Clear VI, the remaining task configurations can cause problems in execution of
subsequent NI-CAN applications.

If the cleared task is the last running task for the initialized interface (refer to CAN Init
Start.vi), the CAN Clear VI also stops communication on the interface’s CAN controller and
disconnects all terminal connections for that interface.

Unlike other VIs, this VI will execute when status is TRUE in Error in.

Because this VI clears the task, the task reference is not wired as an output. To change
properties of a task and start again, use CAN Stop.vi.

Chapter 5 Channel API for LabVIEW — CAN Clear with NI-DAQ.vi

NI-CAN Hardware and Software Manual 5-6 ni.com

CAN Clear with NI-DAQ.vi

Purpose
Stop and clear the CAN task and the NI-DAQ task synchronized with CAN Sync Start with
NI-DAQ.vi.

Format

Inputs

task reference in is the NI-CAN task reference you passed through the
CAN Sync Start with NI-DAQ VI.

NI-DAQ task ID is the same NI-DAQ task ID you wired into the CAN
Sync Start with NI-DAQ VI.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 Channel API for LabVIEW — CAN Clear with NI-DAQ.vi

© National Instruments Corporation 5-7 NI-CAN Hardware and Software Manual

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Both tasks are cleared to their state prior to CAN Sync Start with NI-DAQ. For example,
this VI clears terminal routing of the NI-DAQ device to the default state.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so that you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the
VI for your own editing.

Chapter 5 Channel API for LabVIEW — CAN Clear Multiple with NI-DAQ.vi

NI-CAN Hardware and Software Manual 5-8 ni.com

CAN Clear Multiple with NI-DAQ.vi

Purpose
Stop and clear the list of CAN tasks and the list of NI-DAQ tasks synchronized with CAN
Sync Start Multiple with NI-DAQ.vi.

Format

Inputs

CAN task reference list is the same array of NI-CAN task references you
wired into the CAN Sync Start Multiple with NI-DAQ VI.

NI-DAQ task ID list is the same array of NI-DAQ task IDs you wired into
the CAN Sync Start Multiple with NI-DAQ VI.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 Channel API for LabVIEW — CAN Clear Multiple with NI-DAQ.vi

© National Instruments Corporation 5-9 NI-CAN Hardware and Software Manual

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
All tasks are cleared to their state prior to CAN Sync Start Multiple with NI-DAQ.
For example, this VI clears terminal routing of all NI-DAQ devices to the default state.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the
VI for your own editing.

Chapter 5 Channel API for LabVIEW — CAN Connect Terminals.vi

NI-CAN Hardware and Software Manual 5-10 ni.com

CAN Connect Terminals.vi

Purpose
Connect terminals in the CAN hardware.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

source terminal specifies the source of the connection.

Once the connection is successfully created, behavior flows from source
terminal to destination terminal.

For a list of valid source/destination pairs, refer to the Valid Combinations
of Source/Destination section.

The following list describes each value of source terminal:

RTSI0 … RTSI6

Selects a general-purpose RTSI line as source (input) of the
connection.

10 Hz Resync Event

10 Hz Resync Event selects a 10 Hz, 50 percent duty cycle clock.
This slow rate is required for resynchronization of Series 1 CAN
cards. On each pulse of the resync clock, the other CAN card
brings its clock into sync.

By selecting RTSI0 to RTSI6 as the destination terminal, you
route the 10 Hz clock to synchronize with other Series 1 CAN

Chapter 5 Channel API for LabVIEW — CAN Connect Terminals.vi

© National Instruments Corporation 5-11 NI-CAN Hardware and Software Manual

cards. NI-DAQ cards cannot use the 10 Hz resync clock, so this
selection is limited to synchronization of two or more Series 1
CAN cards.

10 Hz Resync Event applies to the entire CAN card, including
both interfaces of a 2-port CAN card. The CAN card is specified
by the task interface, such as the interface input to CAN
Initialize.vi.

Start Trigger Event

Start Trigger Event selects the start trigger, the event that begins
sampling for tasks.

The start trigger is the same for all tasks using a given interface,
such as the interface input to CAN Initialize.vi.

In the default (disconnected) state of the Start Trigger
destination, the start trigger occurs when communication begins
on the interface.

By selecting RTSI0 to RTSI6 as the destination terminal, you
route the start trigger of this CAN card to the start trigger of other
CAN or DAQ cards. This ensures that sampling begins at the same
time on both cards. For example, you can synchronize two CAN
cards by routing Start Trigger Event as the source terminal on
one CAN card and then routing Start Trigger as the destination
terminal on the other CAN card, with both cards using the same
RTSI line for the connections.

destination terminal specifies the destination of the connection.

The following list describes each value of destination terminal:

RTSI0 … RTSI6

Selects a general-purpose RTSI line as destination (output) of the
connection.

10 Hz Resync

10 Hz Resync instructs the CAN card to use a 10 Hz, 50 percent
duty cycle clock to resynchronize its local timebase. This slow
rate is required for resynchronization of CAN cards. On each
pulse of the resync clock, this CAN card brings its local timebase
into sync.

Chapter 5 Channel API for LabVIEW — CAN Connect Terminals.vi

NI-CAN Hardware and Software Manual 5-12 ni.com

When synchronizing to an E-series MIO card, a typical use of this
value is to use RTSI0 to RTSI6 as the source terminal, then use
NI-DAQ functions to program the MIO card’s Counter 0 to
generate a 10 Hz 50 percent duty cycle clock on the RTSI line.
For an example, refer to CAN Sync Start with NI-DAQ.vi.

When synchronizing to a CAN card, a typical use of this value is
to use RTSI0 to RTSI6 as the source terminal, then route the
other CAN card’s 10 Hz Resync Event as the source terminal to
the same RTSI line.

10 Hz Resync applies to the entire CAN card, including both
interfaces of a 2-port CAN card. The CAN card is specified by the
task interface, such as the interface input to CAN Initialize.vi.

The default (disconnected) state of this destination means the
CAN card does not resynchronize its local timebase.

Start Trigger

Start Trigger selects the start trigger, the event that begins
sampling for tasks.

The start trigger is the same for all tasks using a given interface,
such as the interface input to CAN Initialize.vi.

By selecting RTSI0 to RTSI6 as the source terminal, you route
the start trigger from another CAN or DAQ card. This ensures that
sampling begins at the same time on both cards. For example, you
can synchronize with an E-Series DAQ MIO card by routing the
MIO card’s AI start trigger to a RTSI line and then routing the
same RTSI line with Start Trigger as the destination terminal
on the CAN card.

The default (disconnected) state of this destination means the start
trigger occurs when communication begins on the interface.
Because communication begins when the first interface task is
started, this does not synchronize sampling with other NI cards.

modifiers provides optional connection information for certain
source/destination pairs. The current release of NI-CAN does not use this
information for any source/destination pair, so modifiers must be left
unwired.

Chapter 5 Channel API for LabVIEW — CAN Connect Terminals.vi

© National Instruments Corporation 5-13 NI-CAN Hardware and Software Manual

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task
reference to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI connects a specific pair of source/destination terminals. One of the terminals is
typically a RTSI signal, and the other terminal is an internal terminal in the CAN hardware.
By connecting internal terminals to RTSI, you can synchronize the CAN card with another
hardware product such as an NI-DAQ card.

The most common uses of RTSI synchronization are demonstrated by the CAN Sync Start
with NI-DAQ.vi and CAN Sync Start Multiple with NI-DAQ.vi example VIs. The diagram
for each of these example VIs uses CAN Connect Terminals, and therefore serves as a good
starting point when learning this VI.

Chapter 5 Channel API for LabVIEW — CAN Connect Terminals.vi

NI-CAN Hardware and Software Manual 5-14 ni.com

When the final task for a given interface is cleared with CAN Clear.vi, NI-CAN disconnects
all terminal connections for that interface. Therefore, CAN Disconnect Terminals.vi is not
required for most applications. NI-DAQ terminals remain connected after the tasks are
cleared, so you must disconnect NI-DAQ terminals manually at the end of your application.

For a list of valid source/destination pairs, refer to the following section.

Valid Combinations of Source/Destination
Table 5-2 lists all valid combinations of source terminal and destination terminal.

NI-CAN hardware has the following limitations.

• PXI cards do not support RTSI 6.

• Signals received from a RTSI source cannot occur faster than 1 kHz. This prevents the
card from receiving a 10 MHz or 20 MHz timebase, such as NI E-Series MIO hardware
provides.

• Signals received from a RTSI source must be at least 100 µs in length to be detected. This
prevents the card from receiving triggers in the nanoseconds range, such as the AI trigger
that E-Series MIO hardware provides.

Table 5-2. Valid Combinations of Source/Destination

 Source

Destination

RTSI0 to RTSI6 10 Hz Resync Start Trigger

RTSI0 to RTSI6 — X X

10 Hz Resync Event X — X

Start Trigger Event X — —

Chapter 5 Channel API for LabVIEW — CAN Create Message.vi

© National Instruments Corporation 5-15 NI-CAN Hardware and Software Manual

CAN Create Message.vi

Purpose
Create a message configuration and associated channel configurations within your LabVIEW
application.

Format

Inputs

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CAN0,
value 1 selects CAN1, and so on.

The interface input is required.

The default baud rate for the interface is defined within MAX, but you can
change it by setting the Interface Baud Rate property with CAN Set
Property.vi.

mode specifies the I/O mode for the task, as follows:

Input

Input channel data from received CAN messages. Use CAN
Read.vi to obtain input samples as single point, array, or
waveform.

Use this input mode to read waveforms of timed samples, such as
for comparison with NI-DAQ waveforms. You can also use this
input mode to read a single point from the most recent message,
such as for control or simulation.

Chapter 5 Channel API for LabVIEW — CAN Create Message.vi

NI-CAN Hardware and Software Manual 5-16 ni.com

Output

Output channel data to CAN messages for transmit. Use CAN
Write.vi to write output samples as single-point, array, or
waveform.

Timestamped Input

Input channel data from received CAN messages. Use CAN
Read.vi to obtain input samples as an array of sample/timestamp
pairs (Poly VI types ending in Timestamped Dbl).

Use this input mode to read samples with timestamps that indicate
when each message is received from the network.

sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means
to sample immediately.

For mode of Input, a sample rate of zero means that CAN Read returns a
single point from the most recent message received, and greater than zero
means that CAN Read returns samples timed at the specified rate.

For mode of Output, a sample rate of zero means that CAN messages
transmit immediately when CAN Write is called, and greater than zero
means that CAN messages are transmitted periodically at the specified rate.

For mode of Timestamped Input, sample rate is ignored.

message config configures properties for a new message. These properties
are similar to the message properties in MAX. Can Create Message.vi
creates a task for a single message with one or more channels.

message ID

Configures the arbitration ID of the message.

Use the ID is Extended? property to specify whether the ID is
standard (11-bit) or extended (29-bit).

extended ID?

Configures a Boolean value that indicates whether the arbitration
ID of the message is standard 11-bit format (false) or extended
29-bit format (true).

Chapter 5 Channel API for LabVIEW — CAN Create Message.vi

© National Instruments Corporation 5-17 NI-CAN Hardware and Software Manual

number of bytes

Configures the number of data bytes in the message. The range is
0 to 8.

channel config list configures a list of channels for the new message. The
channel config list is an array of clusters, with one cluster for each channel.
The properties of each channel entry are similar to the channel properties
in MAX:

start bit

Configures the starting bit position in the message. The range is 0
(lowest bit in first byte) to 63 (highest bit in last byte).

number of bits

Configures the number of bits for the raw data in the message.
The range is 0 to 64.

byte order

Configures the channel’s byte order in the message.

The value of byte order is an enumeration:

0 Intel Bytes are in little-endian order, with
most-significant first.

1 Motorola Bytes are in big-endian order, with
least-significant first.

data type

Configures the channel’s data type in the message.

The value of Channel Data Type is an enumeration:

0 Signed Raw data in the message is a signed
integer.

1 Unsigned Raw data in the message is an unsigned
integer.

2 IEEE Float Raw data in the message is
floating-point; no scaling required.

Chapter 5 Channel API for LabVIEW — CAN Create Message.vi

NI-CAN Hardware and Software Manual 5-18 ni.com

scaling factor

Configures the scaling factor used to convert raw data in the
message to/from scaled floating-point units. The scaling factor is
the A in the linear scaling formula AX + B, where X is the raw data,
and B is the scaling offset.

scaling offset

Configures the scaling offset used to convert raw data in the
message to/from scaled floating-point units. The scaling offset is
the B in the linear scaling formula AX + B, where X is the raw data,
and A is the scaling factor.

min value

Configures the minimum value of the channel in scaled
floating-point units.

The CAN Read and CAN Write VIs do not coerce samples when
converting to/from CAN messages. You can use this value with
property nodes to set the range of front-panel controls and
indicators.

max value

Configures the maximum value of the channel in scaled
floating-point units.

The CAN Read and CAN Write VIs do not coerce samples when
converting to/from CAN messages. You can use this value with
property nodes to set the range of front-panel controls and
indicators.

default value

Configures the default value of the channel in scaled
floating-point units.

For information on how the default value is used, refer to
CAN Read.vi and CAN Write.vi.

unit string

Configures the channel unit string. The string is no more than
64 characters in length.

You can use this value to display units (such as volts or RPM)
along with the channel’s samples.

Chapter 5 Channel API for LabVIEW — CAN Create Message.vi

© National Instruments Corporation 5-19 NI-CAN Hardware and Software Manual

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

Outputs

Use task reference out with all subsequent VIs to reference the task. Wire
this task reference to CAN Start.vi before you read or write samples for the
message.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
To use message and channel configurations from MAX or a CAN database, use CAN Init
Start.vi or CAN Initialize.vi. The CAN Create Message provides an alternative in which
you create the message and channel configurations within your application, without use of
MAX or a CAN database.

CAN Create Message returns a task reference that you wire to CAN Start.vi to start
communication for the message and its channels.

Chapter 5 Channel API for LabVIEW — CAN Disconnect Terminals.vi

NI-CAN Hardware and Software Manual 5-20 ni.com

CAN Disconnect Terminals.vi

Purpose
Disconnect terminals in the CAN hardware.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

source terminal specifies the connection source.

For a description of values for source terminal, refer to CAN Connect
Terminals.vi.

destination terminal specifies the connection destination.

For a description of values for destination terminal, refer to CAN
Connect Terminals.vi.

modifiers provides optional connection information for certain
source/destination pairs. The current release of NI-CAN does not use this
information for any source/destination pair, so modifiers must be left
unwired.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

Chapter 5 Channel API for LabVIEW — CAN Disconnect Terminals.vi

© National Instruments Corporation 5-21 NI-CAN Hardware and Software Manual

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task
reference to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI disconnects a specific pair of source/destination terminals that you previously
connected with CAN Connect Terminals.vi.

When the final task for a given interface is cleared with CAN Clear.vi, NI-CAN disconnects
all terminal connections for that interface. Therefore, the CAN Disconnect Terminals VI is
not required for most applications. You typically use this VI to change RTSI connections
dynamically while your application is running. First, use CAN Stop.vi to stop all tasks for the
interface, then use CAN Disconnect Terminals and CAN Connect Terminals to adjust
RTSI connections, then CAN Start.vi to restart sampling.

Chapter 5 Channel API for LabVIEW — CAN Get Names.vi

NI-CAN Hardware and Software Manual 5-22 ni.com

CAN Get Names.vi

Purpose
Get an array of CAN channel names or message names from MAX or a CAN database file.

Format

Inputs

filepath is an optional path to a CAN database file from which to get
channel names. The file must use either a .DBC or .NCD extension. Files
with extension .DBC use the CANdb database format. Files with extension
.NCD use the NI-CAN database format. You can generate NI-CAN
database files from the Save Channels or FP 1300 selection in MAX.

The default (unwired) value of filepath is empty, which means to get the
channel names from MAX. The MAX CAN channels are in the MAX CAN
Channels listing within Data Neighborhood.

message name is an optional input that filters the names for a specific
message. The default (unwired) value is an empty string, which means to
return all names in the database. If you wire a nonempty string, the channel
list output is limited to channels of the specified message. This input
applies to mode of channels only. It is ignored for mode of messages.

mode is an optional input that specifies the type of names to return.

The value of mode is an enumeration:

0 channels Return list of channel names. You can write this list
to CAN Init Start. This is the default value

1 messages Return list of message names.

Chapter 5 Channel API for LabVIEW — CAN Get Names.vi

© National Instruments Corporation 5-23 NI-CAN Hardware and Software Manual

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

channel list returns the array of channel names, one string entry per
channel.

The names in channel list use the minimum syntax required to properly
initialize the channels:

• If filepath is wired, CAN Get Names prepends the file path to the first
name in channel list, with a double colon separating the file path and
channel name.

• If a channel name is used within only one message in the database,
CAN Get Names returns only the channel name in the array. If a
channel name is used within multiple messages, CAN Get Names
prepends the message name to that channel name, with a decimal point
separating the message and channel name. This syntax ensures that the
duplicate channel is associated to a single message in the database.

For more information on the syntax conventions for channel names, refer
to CAN Init Start.vi.

To start a task for all channels returned from CAN Get Names, wire
channel list to the CAN Init Start VI to start a task.

You can also wire channel list to the property nodes of a front panel control
such as a ring or list box. The user of your VI can then select names using
this control, and the selected names can be wired to CAN Init Start.

Chapter 5 Channel API for LabVIEW — CAN Get Names.vi

NI-CAN Hardware and Software Manual 5-24 ni.com

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 Channel API for LabVIEW — CAN Get Property.vi

© National Instruments Corporation 5-25 NI-CAN Hardware and Software Manual

CAN Get Property.vi

Purpose
Get a property for the task, or a single channel within the task. The poly VI selection
determines the property to get.

To select the property, right-click the VI, go to Select Type and select the property by name.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

channel name specifies an individual channel within the task. The default
(unwired) value of channel name is empty, which means the property
applies to the entire task, not a specific channel.

Properties that begin with the word Channel or Message do not apply to the
entire task, but an individual channel or message within the task. For these
channel-specific properties, you must wire the name of a channel from
channel list into the channel name input.

For properties that do not begin with the word Channel or Message, you
must leave channel name unwired (empty).

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

Chapter 5 Channel API for LabVIEW — CAN Get Property.vi

NI-CAN Hardware and Software Manual 5-26 ni.com

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task
reference to subsequent VIs for this task.

The poly output value returns the property value. You select the property
returned in value by selecting the Poly VI type. The data type of value is
also determined by the Poly VI selection. For information about the
different properties provided by CAN Get Property, refer to the Poly VI
Types section.

To select the property, right-click the VI, go to Select Type, and select the
property by name.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Poly VI Types

Number of Channels

Returns the number of channels initialized in channel list. This is the
number of array entries required when using CAN Read or CAN Write.

Timeout

Returns the Timeout property, which is used with some input task
configurations. For more information, refer to the Timeout property in
CAN Set Property.

Chapter 5 Channel API for LabVIEW — CAN Get Property.vi

© National Instruments Corporation 5-27 NI-CAN Hardware and Software Manual

Number of Samples Pending

Returns the number of samples available to be read using CAN Read.
If you set the number of samples to read input of CAN Read to this value,
CAN Read returns immediately without waiting.

This property applies only to tasks initialized with mode of Input and
sample rate greater than zero. For all other configurations, it returns an
error.

Behavior After Final Output

Returns the Behavior After Final Output property, which is used with
some output task configurations. For more information, refer to the
Behavior After Final Output property in CAN Set Property.

Interface

Returns the interface initialized for the task, such as with the CAN Init
Start VI.

Mode

Returns the mode initialized for the task, such as with the CAN Init
Start VI.

Sample Rate

Returns the sample rate initialized for the task, such as with the CAN Init
Start VI.

Message ID

Returns the arbitration ID of the channel’s message.

To determine whether the ID is standard (11-bit) or extended (29-bit), get
the Message ID is Extended? property.

The value of this property cannot be changed using CAN Set Property.

Message ID is Extended?

Returns a Boolean value that indicates whether the arbitration ID of the
channel’s message is standard 11-bit format (false) or extended 29-bit
format (true).

The value of this property cannot be changed using CAN Set Property.

Chapter 5 Channel API for LabVIEW — CAN Get Property.vi

NI-CAN Hardware and Software Manual 5-28 ni.com

Message Number of Data Bytes

Returns the number of data bytes in the channel’s message. The range is
0 to 8.

The value of this property cannot be changed using CAN Set Property.

Message Name

Returns the name of the channel’s message. The string is no more than
80 characters in length.

The value of this property cannot be changed using CAN Set Property.

Channel Start Bit

Returns the starting bit position in the message. The range is 0 (lowest bit
in first byte) to 63 (highest bit in last byte).

The value of this property cannot be changed using CAN Set Property.

Channel Number of Bits

Returns the number of bits in the message. The range is 0 to 64.

The value of this property cannot be changed using CAN Set Property.

Channel Byte Order

Returns the channel’s byte order in the message.

The value of Channel Byte Order is an enumeration:

0 Intel Bytes are in little-endian order, with
most-significant first.

1 Motorola Bytes are in big-endian order, with least-significant
first.

The value of this property cannot be changed using CAN Set Property.

Channel Data Type

Returns the channel’s data type in the message.

The value of Channel Data Type is an enumeration:

0 Signed Raw data in the message is a signed integer.

1 Unsigned Raw data in the message is an unsigned integer.

Chapter 5 Channel API for LabVIEW — CAN Get Property.vi

© National Instruments Corporation 5-29 NI-CAN Hardware and Software Manual

2 IEEE Float Raw data in the message is floating-point; no scaling
required.

The value of this property cannot be changed using CAN Set Property.

Channel Scaling Factor

Returns the scaling factor used to convert raw bits of the message to/from
scaled floating-point units. The scaling factor is the A in the linear scaling
formula AX + B, where X is the raw data, and B is the scaling offset.

CAN messages use the raw data, and the CAN Read and CAN Write VIs
provide access to samples in floating-point units.

The value of this property cannot be changed using CAN Set Property.

Channel Scaling Offset

Returns the scaling offset used to convert raw bits of the message to/from
scaled floating-point units. The scaling offset is the B in the linear scaling
formula AX + B, where X is the raw data, and A is the scaling factor.

CAN messages use the raw data, and the CAN Read and CAN Write VIs
provide access to samples in floating-point units.

The value of this property cannot be changed using CAN Set Property.

Channel Minimum Value

Returns the minimum value of the channel in scaled floating-point units.

The CAN Read and CAN Write VIs do not coerce samples when
converting to/from CAN messages. You can use this value with property
nodes to set the range of front-panel controls and indicators.

The value of this property cannot be changed using CAN Set Property.

Channel Maximum Value

Returns the maximum value of the channel in scaled floating-point units.

The CAN Read and CAN Write VIs do not coerce samples when
converting to/from CAN messages. You can use this value with property
nodes to set the range of front-panel controls and indicators.

The value of this property cannot be changed using CAN Set Property.

Chapter 5 Channel API for LabVIEW — CAN Get Property.vi

NI-CAN Hardware and Software Manual 5-30 ni.com

Channel Default Value

Returns the default value of the channel in scaled floating-point units.

For information on how Channel Default Value is used, refer to CAN
Read.vi and CAN Write.vi.

The value of this property is originally set within MAX or
Can Create Message.vi. If the channel is initialized directly from a CAN
database, the value is 0.0 by default, but it can be changed using CAN Set
Property.vi.

Channel Unit String

Returns the unit string of the channel. The string is no more than
80 characters in length.

You can use this value to display units (such as volts or RPM) along with
the channel’s samples.

The value of this property cannot be changed using CAN Set Property.

Hardware Serial Number

Returns the hardware serial number for the NI-CAN hardware that contains
Interface.

Hardware Form Factor

Returns the hardware form factor for the NI-CAN hardware that contains
Interface.

The value of Hardware Form Factor is an enumeration:

0 PCI

1 PXI

2 PCMCIA

3 AT

Hardware Transceiver

Returns the hardware form factor for the NI-CAN hardware that contains
Interface.

Chapter 5 Channel API for LabVIEW — CAN Get Property.vi

© National Instruments Corporation 5-31 NI-CAN Hardware and Software Manual

The value of Hardware Transceiver is an enumeration:

0 HS

1 LS

This property is not supported on the PCMCIA form factor.

Version Major

Returns the major version of the NI-CAN software, such as the 2 in
version 2.1.5.

Version Minor

Returns the minor version of the NI-CAN software, such as the 1 in
version .2.1.5.

Version Update

Returns the update version of the NI-CAN software, such as the 5 in
version .2.1.5.

Version Phase

Returns the phase of the NI-CAN software.

The value of Version Phase is an enumeration:

0 Development

1 Alpha

1 Beta

1 Release

Versions of NI-CAN in hardware kits or on ni.com will always be
Release.

Version Build

Returns the build number of the NI-CAN software. This number applies to
Development, Alpha, and Beta phase only, and should be ignored for
Release phase.

Version Comment

Returns a comment string for the NI-CAN software. If you received a
custom release of NI-CAN from National Instruments, this comment often
describes special features of the release.

Chapter 5 Channel API for LabVIEW — CAN Get Property.vi

NI-CAN Hardware and Software Manual 5-32 ni.com

Interface Baud Rate

Returns the baud rate in use by the Interface.

Basic baud rates such as 125000 and 500000 are specified as the numeric
rate.

Advanced baud rates are specified as 8000XXYY hex, where YY is the value
of Bit Timing Register 0 (BTR0), and XX is the value of Bit Timing
Register 1 (BTR1) of the CAN controller chip. For more information, refer
to the Interface Properties dialog in MAX.

The value of this property is originally set within MAX, but it can be
changed using CAN Set Property.vi.

Chapter 5 Channel API for LabVIEW — CAN Initialize.vi

© National Instruments Corporation 5-33 NI-CAN Hardware and Software Manual

CAN Initialize.vi

Purpose
Initialize a task for the specified channel list.

Format

Inputs

channel list is the array of channel names to initialize as a task. Each
channel name is provided in an array entry.

For more information, refer to the channel list input of CAN Init Start.vi.

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CAN0,
value 1 selects CAN1, and so on.

The default (unwired) value is 65535, which means to use the default
interface as defined in the MAX configuration. If the default interface in
MAX is All, or if one or more channels in channel list specifies a filepath,
the interface is a required input to this VI.

The Channel API and Frame API cannot use the same CAN network
interface simultaneously. If the CAN network interface is already
initialized in the Frame API, this function returns an error.

mode specifies the I/O mode for the task:

Input

Input channel data from received CAN messages. Use CAN
Read.vi to obtain input samples as single-point, array, or
waveform.

Chapter 5 Channel API for LabVIEW — CAN Initialize.vi

NI-CAN Hardware and Software Manual 5-34 ni.com

Use this input mode to read waveforms of timed samples, such as
for comparison with NI-DAQ waveforms. You can also use this
input mode to read a single point from the most recent message,
such as for control or simulation.

For this mode, the channels in channel list can be contained in
multiple messages.

Output

Output channel data to CAN messages for transmit. Use CAN
Write.vi to write output samples as single point, array, or
waveform.

For this mode, there are restrictions on using channels in
channel list that are contained in multiple messages. Refer to
CAN Write.vi for more information.

Timestamped Input

Input channel data from received CAN messages. Use CAN
Read.vi to obtain input samples as an array of sample/timestamp
pairs (Poly VI types ending in Timestamped Dbl).

Use this input mode to read samples with timestamps that indicate
when each message is received from the network.

For this mode, the channels in channel list must be contained in a
single message.

sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means
to sample immediately.

For mode of Input, sample rate of zero means that CAN Read returns a
single point from the most recent message received, and greater than zero
means that CAN Read returns samples timed at the specified rate.

For mode of Output, sample rate of zero means that CAN messages
transmit immediately when CAN Write is called, and greater than zero
means that CAN messages are transmitted periodically at the specified rate.

For mode of Timestamped Input, sample rate is ignored.

Chapter 5 Channel API for LabVIEW — CAN Initialize.vi

© National Instruments Corporation 5-35 NI-CAN Hardware and Software Manual

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

Use task reference out with all subsequent VIs to reference the task. Wire
this task reference to CAN Start.vi before you read or write samples for the
message.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN Initialize VI does not start communication. This enables you to
use CAN Set Property.vi to change the task’s properties, or CAN
Connect Terminals.vi to synchronize CAN or DAQ cards. After you
change properties or connections, use CAN Start.vi to start
communication for the task.

Chapter 5 Channel API for LabVIEW — CAN Init Start.vi

NI-CAN Hardware and Software Manual 5-36 ni.com

CAN Init Start.vi

Purpose
Initialize a task for the specified channel list, then start communication.

Format

Inputs

channel list is the array of channel names to initialize and start as a task.
Each channel name is provided in an array entry.

You can type in the channel list entries as string constants, or you can
obtain the list from MAX or another CAN database by using CAN Get
Names.vi.

You can initialize the same channel list with different interface, mode, or
sample rate, because each task reference is unique.

The following paragraphs describe the syntax of each channel name.
Brackets indicate optional fields.

[filepath::][message.]channel

• filepath is the path to a CAN database file from which to import the
channel (signal) configurations. The filepath must use Windows
directory syntax, and must be followed by a double-colon.

If filepath is not included, the channel configuration is obtained from
MAX. The MAX CAN channels are in the MAX CAN Channels
listing within Data Neighborhood.

Once you specify a filepath, it will continue to be applied to
subsequent names in the channel list array until you specify a new
filepath. After using filepath for a CAN database file, you can revert to
using MAX by specifying an empty filepath (double colon only).

Chapter 5 Channel API for LabVIEW — CAN Init Start.vi

© National Instruments Corporation 5-37 NI-CAN Hardware and Software Manual

• message refers to the message in which the channel is contained.
The message name must be followed by a decimal point.

If the channel name occurs in multiple messages, you must specify the
message name to identify the channel uniquely. Within MAX,
channels with the same name in multiple messages are shown with a
yellow exclamation point.

If the channel name is unique across all channels, the message name is
not required.

• channel refers to the channel (signal) name in MAX or the CAN
database (indicated by filepath).

The following examples demonstrate the channel list syntax:

1. List of channels from MAX, each channel name unique across all
messages.

• myChan1

• myChan2

• myChan3

2. List of channels from a CANdb file, each channel name unique across
all messages.

• C:\MyCandbFiles\MyChannels.DBC::myChan1

• myChan2

• myChan3

3. List of channels from MAX, with one channel duplicated across two
messages. MyChan2 and MyChan3 must be unique across all
messages.

• myMessage1.myChan1

• myChan2

• myMessage2.myChan1

• myChan3

4. List of two channels from a CANdb file, then two channels from
MAX.

• C:\MyCandbFiles\MoreChannels.DBC::myChan1

• myChan2

Chapter 5 Channel API for LabVIEW — CAN Init Start.vi

NI-CAN Hardware and Software Manual 5-38 ni.com

• ::myChan3

• myChan4

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CAN0,
value 1 selects CAN1, and so on.

The default (unwired) value is 65535, which means to use the default
interface as defined in the MAX configuration. If the default interface in
MAX is All, or if one or more channels in channel list specifies a filepath,
the interface is a required input to this VI.

The Channel API and Frame API cannot use the same CAN network
interface simultaneously. If the CAN network interface is already
initialized in the Frame API, this function returns an error.

mode specifies the I/O mode for the task, as follows:

Input

Input channel data from received CAN messages. Use CAN
Read.vi to obtain input samples as single-point, array, or
waveform.

Use this input mode to read waveforms of timed samples, such as
for comparison with NI-DAQ waveforms. You can also use this
input mode to read a single point from the most recent message,
such as for control or simulation.

For this mode, the channels in channel list can be contained in
multiple messages.

Output

Output channel data to CAN messages for transmit. Use CAN
Write.vi to write output samples as single-point, array, or
waveform.

For this mode, there are restrictions on using channels in
channel list that are contained in multiple messages. Refer to
CAN Write.vi for more information.

Timestamped Input

Input channel data from received CAN messages. Use CAN
Read.vi to obtain input samples as an array of sample/timestamp
pairs (Poly VI types ending in Timestamped Dbl).

Chapter 5 Channel API for LabVIEW — CAN Init Start.vi

© National Instruments Corporation 5-39 NI-CAN Hardware and Software Manual

Use this input mode to read samples with timestamps that indicate
when each message is received from the network.

For this mode, the channels in channel list must be contained in a
single message.

sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means
to sample immediately.

For mode of Input, a sample rate of zero means that CAN Read returns a
single point from the most recent message received, and greater than zero
means that CAN Read returns samples timed at the specified rate.

For mode of Output, a sample rate of zero means that CAN messages
transmit immediately when CAN Write is called, and greater than zero
means that CAN messages are transmitted periodically at the specified rate.

For mode of Timestamped Input, sample rate is ignored.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

Use task reference out with all subsequent VIs to reference the running
task. Because CAN Init Start starts communication, you can wire this task
reference to CAN Read.vi or CAN Write.vi.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Channel API for LabVIEW — CAN Init Start.vi

NI-CAN Hardware and Software Manual 5-40 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

The diagram for this VI simply calls CAN Initialize.vi followed by CAN
Start.vi. This provides an easy way to start a list of channels.

The following list describes the scenarios for which CAN Init Start.vi
cannot be used:

• If you need to set properties for the channels, use CAN Initialize, then
CAN Set Property.vi, then CAN Start.vi. The CAN Init Start VI
starts communication, and most channel properties cannot be changed
after the task is started.

• If you need to synchronize tasks for multiple NI-CAN or NI-DAQ
cards, refer to the VIs in the CAN/DAQ Synchronization palette,
such as CAN Sync Start with NI-DAQ.vi.

• If you need to create channel configurations entirely within LabVIEW,
without using MAX or a CAN database file, use CAN Create
Message.vi, then CAN Start.vi. The CAN Init Start VI accepts only
channel names defined in MAX or a CAN database file.

Chapter 5 Channel API for LabVIEW — CAN Read.vi

© National Instruments Corporation 5-41 NI-CAN Hardware and Software Manual

CAN Read.vi

Purpose
Read samples from a CAN task initialized as input. Samples are obtained from received CAN
messages. The poly VI selection determines the data type to read.

To select the data type, right-click the VI, go to Select Type, and select the type by name. For
an overview of CAN Read, refer to the Read and Read Timestamped sections of Chapter 4,
Using the Channel API.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

The mode initialized for the task must be either Input or Timestamped
Input.

number of samples to read specifies the number of samples to read for the
task. For single-sample Poly VI types, CAN Read always returns one
sample, so this input is ignored.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 5 Channel API for LabVIEW — CAN Read.vi

NI-CAN Hardware and Software Manual 5-42 ni.com

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task
reference to subsequent VIs for this task.

number of samples returned indicates the number of samples returned in
the samples output.

The poly output samples returns the samples read from received CAN
messages. The type of the poly output is determined by the Poly VI
selection. For information on the different poly VI types provided by CAN
Read, refer to the Poly VI Types section.

To select the data type, right-click the VI, go to Select Type, and select the
type by name.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Poly VI Types
The name of each Poly VI type uses the following conventions:

• The first term is either Single-Chan or Multi-Chan. This indicates whether the type
returns data for a single channel or multiple channels. Multi-Chan types return an array
of analogous Single-Chan types, one entry for each channel initialized in channel list of
CAN Init Start. Single-Chan types are convenient because no array indexing is
required, but you are limited to reading only one CAN channel.

• The second term is either Single-Samp or Multi-Samp. This indicates whether the type
returns a single sample, or an array of multiple samples. Single-Samp types are often
used for single point control applications, such as within LabVIEW RT.

Chapter 5 Channel API for LabVIEW — CAN Read.vi

© National Instruments Corporation 5-43 NI-CAN Hardware and Software Manual

• The third term indicates the data type used for each sample. The word Dbl indicates
double-precision (64-bit) floating point. The word Wfm indicates the waveform data
type. The words 1D and 2D indicate one and two-dimensional arrays, respectively. The
words Time & Dbl indicate a cluster of a LabVIEW timestamp and a double-precision
sample.

Single-Chan Single-Samp Dbl

Returns a single sample for the first channel initialized in channel list.

If the initialized sample rate is greater than zero, this poly VI type waits for the next
sample time, then returns a single sample. This enables you to execute a control loop at
a specific rate.

If the initialized sample rate is zero, this poly VI immediately returns a single sample.

The samples output returns a single sample from the most recent message received. If no
message has been received since you started the task, the Default Value of the channel is
returned in samples.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read (or CAN Start). If no message has been received, the
warning code 3FF60009 hex is returned in error out. If a new message has been
received, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, number of samples returned is one.

The Timeout property is not used with this poly VI type.

Multi-Chan Single-Samp 1D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists
of a single sample.

The order of channel entries in samples is the same as the order in the original channel
list.

If the initialized sample rate is greater than zero, this poly VI type waits for the next
sample time, then returns a single sample for each channel. This enables you to execute
a control loop at a specific rate.

If the initialized sample rate is zero, this poly VI immediately returns a single sample
for each channel.

The samples output returns a single sample for each channel from the most recent
message received. If no message has been received for a channel since you started the
task, the Default Value of the channel is returned in samples.

You can specify channels in channel list that span multiple messages. A sample from the
most recent message is returned for all channels.

Chapter 5 Channel API for LabVIEW — CAN Read.vi

NI-CAN Hardware and Software Manual 5-44 ni.com

You can use error out to determine whether a new message has been received since the
previous call to CAN Read (or CAN Start). If no message has been received for one or
more channels, the warning code 3FF60009 hex is returned in error out. If a new
message has been received for all channels, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, number of samples returned is one. The samples array is
indexed by channel, and each channel’s entry contains a single sample.

The Timeout property is not used with this poly VI type.

If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

Single-Chan Multi-Samp 1D Dbl

Returns an array of samples for the first channel initialized in channel list.

The initialized sample rate must be greater than zero for this poly VI, because each
sample in the array indicates the value of the CAN channel at a specific point in time.
In other words, the sample rate specifies a virtual clock that copies the most recent value
from CAN messages for each sample time. The changes in sample values from message
to message enable you to view the CAN channel over time, such as for comparison with
other CAN or DAQ input channels.

If the initialized sample rate is zero, this poly VI returns an error. If your intent is simply
to read the most recent sample for a task, use the Single-Chan Single-Samp Dbl type.

If no message has been received since you started the task, the Default Value of the
channel is returned in all entries of the samples array.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read (or CAN Start). If no message has been received, the
warning code 3FF60009 hex is returned in error out. If a new message has been
received, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples
to read.

The Timeout property is not used with this poly VI type.

Multi-Chan Multi-Samp 2D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists
of an array of samples.

The order of channel entries in samples is the same as the order in the original channel
list.

The initialized sample rate must be greater than zero for this poly VI, because each
sample in the array indicates the value of each CAN channel at a specific point in time.

Chapter 5 Channel API for LabVIEW — CAN Read.vi

© National Instruments Corporation 5-45 NI-CAN Hardware and Software Manual

In other words, the sample rate specifies a virtual clock that copies the most recent value
from CAN messages for each sample time. The changes in sample values from message
to message enable you to view the CAN channels over time, such as for comparison with
other CAN or DAQ input channels.

If the initialized sample rate is zero, this poly VI returns an error. If your intent is simply
to read the most recent samples for a task, use the Multi-Chan Single-Samp 1D Dbl
type.

If no message has been received for a channel since you started the task, the Default
Value of the channel is returned in samples.

You can specify channels in channel list that span multiple messages. At each point in
time, a sample from the most recent message is returned for all channels.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read (or CAN Start). If no message has been received for one or
more channels, the warning code 3FF60009 hex is returned in error out. If a new
message has been received for all channels, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples
to read.

The Timeout property is not used with this poly VI type.

If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

Single-Chan Multi-Samp Wfm

Returns a single waveform for the first channel initialized in channel list.

The initialized sample rate must be greater than zero for this poly VI, because each
sample in the array indicates the value of the CAN channel at a specific point in time.
In other words, the sample rate specifies a virtual clock that copies the most recent value
from CAN messages for each sample time. The changes in sample values from message
to message enable you to view the CAN channel over time, such as for comparison with
other CAN or DAQ input channels.

The waveform’s start time indicates the time of the first CAN sample in the array. The
waveform’s delta time indicates the time between each sample in the array, as determined
by the original sample rate.

If the initialized sample rate is zero, this poly VI returns an error. If your intent is to
simply read the most recent sample for a task, use the Single-Chan Single-Samp Dbl
type.

If no message has been received since you started the task, the Default Value of the
channel is returned in all entries of the samples waveform.

Chapter 5 Channel API for LabVIEW — CAN Read.vi

NI-CAN Hardware and Software Manual 5-46 ni.com

You can use error out to determine whether a new message has been received since the
previous call to CAN Read (or CAN Start). If no message has been received, the
warning code 3FF60009 hex is returned in error out. If a new message has been
received, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples
to read.

The Timeout property is not used with this poly VI type.

Multi-Chan Multi-Samp 1D Wfm

Returns an array, one entry for each channel initialized in channel list. Each entry consists
of a single waveform.

The order of channel entries in samples is the same as the order in the original channel
list.

The initialized sample rate must be greater than zero for this poly VI, because each
sample in the waveform’s array indicates the value of the CAN channel at a specific point
in time. In other words, the sample rate specifies a virtual clock that copies the most
recent value from CAN messages for each sample time. The changes in sample values
from message to message enable you to view the CAN channel over time, such as for
comparison with other CAN or DAQ input channels.

Each waveform’s start time indicates the time of the first CAN sample in the array. The
waveform’s delta time indicates the time between each sample in the array, as determined
by the original sample rate.

If the initialized sample rate is zero, this poly VI returns an error. If your intent is simply
to read the most recent samples for a task, use the Multi-Chan Single-Samp 1D Dbl
type.

If no message has been received for a channel since you started the task, the Default
Value of the channel is returned in samples.

You can specify channels in channel list that span multiple messages. At each point in
time, a sample from the most recent message is returned for all channels.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read (or CAN Start). If no message has been received for one or
more channels, the warning code 3FF60009 hex is returned in error out. If a new
message has been received for all channels, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples
to read.

The Timeout property is not used with this poly VI type.

Chapter 5 Channel API for LabVIEW — CAN Read.vi

© National Instruments Corporation 5-47 NI-CAN Hardware and Software Manual

If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

Single-Chan Multi-Samp 1D Time & Dbl

Returns an array of clusters. Each cluster corresponds to a received message for the first
channel initialized in channel list. Each cluster contains the sample value, and a
timestamp that indicates when the message was received.

To use this type, you must set the initialized mode to Timestamped Input (not Input).

The Timeout property determines whether this VI will wait for the number of samples
to read messages to arrive from the network. The default value of Timeout is zero, but
you can change it using CAN Set Property.vi.

If Timeout is greater than zero, the VI will wait for number of samples to read
messages to arrive. If number of samples to read messages are not received before the
Timeout expires, an error is returned. Timeout is specified as seconds.

If Timeout is zero, the VI will not wait for messages, but instead returns samples from
the messages received since the previous call to CAN Read. The number of samples
returned is indicated in the number of samples returned output, up to a maximum of
number of samples to read messages. If no new message has been received, number of
samples returned is 0, and error out indicates success.

Because the timing of values in samples is determined by when the message is received,
the sample rate input is not used with this poly VI type.

Multi-Chan Multi-Samp 2D Time & Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists
of an array of clusters. Each cluster corresponds to a received message for the channels
initialized in channel list. Each cluster contains the sample value, and a timestamp that
indicates when the message was received.

The order of channel entries in samples is the same as the order in the original channel
list.

To use this type, you must set the initialized mode to Timestamped Input (not Input).

You cannot specify channels in channel list that span multiple messages.

The Timeout property determines whether this VI waits for the number of samples to
read messages to arrive from the network. The default value of Timeout is zero, but you
can change it using CAN Set Property.vi.

If Timeout is greater than zero, the VI will wait for number of samples to read
messages to arrive. If number of samples to read messages are not received before the
Timeout expires, an error is returned. Timeout is specified as milliseconds.

If Timeout is zero, the VI will not wait for messages, but instead returns samples from
the messages received since the previous call to CAN Read. The number of samples
returned is indicated in the number of samples returned output, up to a maximum of

Chapter 5 Channel API for LabVIEW — CAN Read.vi

NI-CAN Hardware and Software Manual 5-48 ni.com

number of samples to read messages. If no new message has been received, number of
samples returned is 0, and error out indicates success.

Because the timing of values in samples is determined by when the message is received,
the sample rate input is not used with this poly VI type.

If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

Chapter 5 Channel API for LabVIEW — CAN Set Property.vi

© National Instruments Corporation 5-49 NI-CAN Hardware and Software Manual

CAN Set Property.vi

Purpose
Set a property for the task, or a single channel within the task. The poly VI selection
determines the property to set.

To select the property, right-click the VI, go to Select Type and select the property by name.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from VIs such as CAN Initialize.vi or
CAN Create Message.vi, and then wired through subsequent VIs.

channel name specifies an individual channel within the task. The default
(unwired) value of channel name is empty, which means that the property
applies to the entire task, not a specific channel.

Properties that begin with the word Channel or Message do not apply to the
entire task, but an individual channel or message within the task. For these
channel-specific properties, you must wire the name of a channel from
channel list into the channel name input.

For properties that do not begin with the word Channel or Message, you
must leave channel name unwired (empty).

The poly input value specifies the property value. You select the property
to set as value by selecting the Poly VI type. The data type of value is also
determined by the Poly VI selection. For information on the different
properties provided by CAN Get Property, refer to the Poly VI Types
section.

To select the property, right-click the VI, go to Select Type and select the
property by name.

Chapter 5 Channel API for LabVIEW — CAN Set Property.vi

NI-CAN Hardware and Software Manual 5-50 ni.com

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task reference
to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
You cannot set a property while the task is running. If you need to change a property prior to
starting the task, you cannot use CAN Init Start.vi. First, call CAN Initialize.vi, followed by
CAN Set Property and then CAN Start.vi. After you start the task, you can also change a
property by calling CAN Stop.vi, followed by CAN Set Property, and then CAN Start
again.

Chapter 5 Channel API for LabVIEW — CAN Set Property.vi

© National Instruments Corporation 5-51 NI-CAN Hardware and Software Manual

Poly VI Types

Timeout

Sets a time in milliseconds to wait for samples. The default value is zero.

Use of the Timeout property depends on the initialized mode of the task:

• The timeout value does not apply to an Output task.

• The timeout value does not apply to an Input task. For Input tasks
initialized with sample rate greater than zero, the number of samples
to read input to CAN Read.vi implicitly specifies the time to wait. For
Input tasks initialized with sample rate equal to zero, the CAN Read
VI always returns available samples immediately, without waiting.

• The timeout value does apply to a Timestamped Input task.
A timeout of zero means to return available samples immediately.
A timeout greater than zero means that CAN Read.vi will wait a
maximum of Timeout milliseconds for number of samples to read
samples to become available before returning.

Behavior After Final Output

The Behavior After Final Output property applies only to tasks initialized
with mode of Output, and sample rate greater than zero. The value
specifies the behavior to perform after the final periodic sample is
transmitted.

Behavior After Final Output uses the following values:

Repeat Final Sample

Transmit messages for the final sample(s) repeatedly. The final
messages are transmitted periodically as specified by sample
rate.

If there is significant delay between subsequent calls to CAN
Write.vi, this value means that periodic messages continue
between CAN Write calls, and messages with the final sample’s
data will be repeated on the network.

Repeat Final Sample is the default value of the Behavior After
Final Output property.

Cease Transmit

Cease transmit of messages until the next call to CAN Write.

Chapter 5 Channel API for LabVIEW — CAN Set Property.vi

NI-CAN Hardware and Software Manual 5-52 ni.com

If there is significant delay between subsequent calls to CAN
Write, this value means that periodic messages cease between
CAN Write calls, and the final sample’s data will not be repeated
on the network.

Channel Default Value

Sets the default value of the channel in scaled floating-point units.

For information on how the Channel Default Value is used, refer to
CAN Read.vi and CAN Write.vi.

The value of this property is originally set within MAX. If the channel is
initialized directly from a CAN database, the value is 0.0 by default, but it
can be changed using CAN Set Property.

Interface Baud Rate

Sets the baud rate in use by the Interface.

This property applies to all tasks initialized with the Interface.

You can specify the following basic baud rates as the numeric rate: 83333,
100000, 125000, 200000, 250000, 400000, 500000, 800000, and 1000000.

You can specify advanced baud rates as 8000XXYY hex, where YY is the
value of Bit Timing Register 0 (BTR0), and XX is the value of Bit Timing
Register 1 (BTR1) of the CAN controller. For more information, refer to the
Interface Properties dialog in MAX.

The value of this property is originally set within MAX, but it can be
changed using CAN Set Property.

Chapter 5 Channel API for LabVIEW — CAN Start.vi

© National Instruments Corporation 5-53 NI-CAN Hardware and Software Manual

CAN Start.vi

Purpose
Start communication for the specified task.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from VIs such as CAN Initialize.vi or
CAN Create Message.vi, and then wired through subsequent VIs.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task
reference to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Channel API for LabVIEW — CAN Start.vi

NI-CAN Hardware and Software Manual 5-54 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
You must start communication for a task to use CAN Read.vi or CAN Write.vi. After you
start communication, you can no longer change the task’s configuration with CAN Set
Property.vi or CAN Connect Terminals.vi.

Chapter 5 Channel API for LabVIEW — CAN Stop.vi

© National Instruments Corporation 5-55 NI-CAN Hardware and Software Manual

CAN Stop.vi

Purpose
Stop communication for the specified task.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task
reference to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Channel API for LabVIEW — CAN Stop.vi

NI-CAN Hardware and Software Manual 5-56 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI stops communication so that you can change the task’s configuration, such as by
using CAN Set Property.vi or CAN Connect Terminals.vi. After you change the
configuration, use CAN Start.vi to start again.

This VI does not clear the configuration for the task; therefore, do not use it as the last
NI-CAN VI in your application. CAN Clear.vi must always be the last NI-CAN VI for
each task.

Chapter 5 Channel API for LabVIEW — CAN Sync Start with NI-DAQ.vi

© National Instruments Corporation 5-57 NI-CAN Hardware and Software Manual

CAN Sync Start with NI-DAQ.vi

Purpose
Synchronize and start the specified CAN task and NI-DAQ task.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from VIs such as CAN Initialize.vi or
CAN Create Message.vi.

NI-DAQ task ID is the task ID from an NI-DAQ configuration VI, such as
AI Config or AO Config.

When this VI returns, do not call an NI-DAQ start VI for the task. The
LabVIEW diagram of this VI starts the NI-DAQ task ID on your behalf,
so you can immediately call NI-DAQ read or write VIs.

RTSI terminal specifies the RTSI terminal number to use for the shared
start trigger. This input uses a ring typedef to select terminals from RTSI0
to RTSI6.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 Channel API for LabVIEW — CAN Sync Start with NI-DAQ.vi

NI-CAN Hardware and Software Manual 5-58 ni.com

Outputs

task reference out is the same as task reference in. Wire the task
reference to subsequent NI-CAN VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN and NI-DAQ task execute on different NI hardware products. To use the
input/output samples of these tasks together in your application, the NI hardware products
must be synchronized with RTSI terminal connections. Both NI hardware products must use
a common timebase to avoid clock drift, and a common start trigger to start input/output at
the same time.

This VI uses NI-CAN and NI-DAQ RTSI functions to synchronize the NI hardware products
to a common timebase and start trigger, and then it starts sampling on both tasks. The function
used to connect RTSI terminals on the CAN card is CAN Connect Terminals.vi.

When you use this VI to start the tasks, you must use CAN Clear with NI-DAQ.vi to clear
the tasks.

This VI synchronizes a single CAN hardware product to a single NI-DAQ hardware product.
To synchronize multiple CAN cards and/or multiple NI-DAQ cards, refer to CAN Sync Start
Multiple with NI-DAQ.vi.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so that you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the
VI for your own editing.

Chapter 5 Channel API for LabVIEW — CAN Sync Start with NI-DAQ.vi

© National Instruments Corporation 5-59 NI-CAN Hardware and Software Manual

The diagram of this VI assumes that the NI-DAQ product is an E-series MIO device. If you
are using a different NI hardware product, refer to the diagram as a starting point.

The diagram of this VI issues the start trigger immediately. To implement more complex
triggering, such as using an AI trigger to start, refer to the diagram as a starting point.

Chapter 5 Channel API for LabVIEW — CAN Sync Start Multiple with NI-DAQ.vi

NI-CAN Hardware and Software Manual 5-60 ni.com

CAN Sync Start Multiple with NI-DAQ.vi

Purpose
Synchronize and start the specified list of multiple CAN tasks and NI-DAQ tasks. This is a
more complex implementation of CAN Sync Start with NI-DAQ.vi that supports multiple
CAN and NI-DAQ hardware products.

Format

Inputs

CAN task reference list is an array of NI-CAN task references. Each task
reference is originally returned from VIs such as CAN Initialize.vi or CAN
Create Message.vi. You can build the task references into an array using
the LabVIEW Build Array VI.

NI-DAQ task ID list is an array of NI-DAQ task IDs. Each task ID is
originally returned from an NI-DAQ configuration VI, such as AI Config
or AO Config.

This VI assumes that each task in NI-DAQ task ID list is on a different
NI-DAQ card.

When this VI returns, do not call an NI-DAQ start VI for each task. The
LabVIEW diagram of this VI starts each task in NI-DAQ task ID list on
your behalf, so you can immediately call NI-DAQ read or write VIs.

RTSI terminal specifies the RTSI terminal number to use for the shared
start trigger. This input uses a ring typedef to select terminals from RTSI0
to RTSI6.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

Chapter 5 Channel API for LabVIEW — CAN Sync Start Multiple with NI-DAQ.vi

© National Instruments Corporation 5-61 NI-CAN Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN and NI-DAQ tasks execute on different NI hardware products. To use the
input/output samples of these tasks together in your application, the NI hardware products
must be synchronized with RTSI terminal connections. Both NI hardware products must use
a common timebase to avoid clock drift, and a common start trigger to start input/output at
the same time.

This VI uses NI-CAN and NI-DAQ RTSI functions to synchronize the NI hardware products
to a common timebase and start trigger, and then it starts sampling on all tasks. The function
used to connect RTSI terminals on the CAN card is CAN Connect Terminals.vi.

When you use this VI to start the tasks, you must use CAN Clear Multiple with NI-DAQ.vi
to clear the tasks.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so that you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the
VI for your own editing.

Chapter 5 Channel API for LabVIEW — CAN Sync Start Multiple with NI-DAQ.vi

NI-CAN Hardware and Software Manual 5-62 ni.com

The diagram of this VI assumes that all NI-DAQ products are E-Series MIO devices. If you
are using a different NI hardware product, refer to the diagram as a starting point.

The diagram of this VI issues the start trigger immediately. To implement more complex
triggering, such as using an AI trigger to start, refer to the diagram as a starting point.

Chapter 5 Channel API for LabVIEW — CAN Write.vi

© National Instruments Corporation 5-63 NI-CAN Hardware and Software Manual

CAN Write.vi

Purpose
Write samples to a CAN task initialized as Output (refer to the mode parameter of CAN Init
Start.vi). Samples are placed into transmitted CAN messages. The poly VI selection
determines the data type to write.

To select the data type, right-click the VI, go to Select Type, and select the type by name. For
an overview of CAN Write, refer to the Write section of Chapter 4, Using the Channel API.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

The mode initialized for the task must be Output.

number of samples to write specifies the number of samples to write for
the task. For single-sample Poly VI types, CAN Write always accepts one
sample, so this input is ignored.

The poly input samples specifies the samples to transmit in CAN
messages. The the poly input type is determined by the Poly VI selection.
For information on the different poly VI types provided by CAN Write,
refer to the Poly VI Types section.

To select the data type, right-click the VI, go to Select Type, and select the
type by name.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

Chapter 5 Channel API for LabVIEW — CAN Write.vi

NI-CAN Hardware and Software Manual 5-64 ni.com

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task
reference to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Poly VI Types
The name of each Poly VI type uses the following conventions:

• The first term is either Single-Chan or Multi-Chan. This indicates whether the type
specifies data for a single channel or multiple channels. Multi-Chan types specify an
array of analogous Single-Chan types, one entry for each channel initialized in channel
list of CAN Init Start. Single-Chan types are convenient because no array indexing is
required, but you are limited to writing only one CAN channel.

• The second term is either Single-Samp or Multi-Samp. This indicates whether the type
specifies a single sample, or an array of multiple samples. Single-Samp types are often
used for single-point control applications, such as within LabVIEW RT.

• The third term indicates the data type used for each sample. The word Dbl indicates
double-precision (64-bit) floating point. The word Wfm indicates the waveform data
type. The words 1D and 2D indicate one and two-dimensional arrays, respectively.

Chapter 5 Channel API for LabVIEW — CAN Write.vi

© National Instruments Corporation 5-65 NI-CAN Hardware and Software Manual

Single-Chan Single-Samp Dbl

Writes a single sample for the first channel initialized in channel list.

If the initialized sample rate is greater than zero, the task transmits a CAN message
periodically at the specified rate. The first CAN Write transmits a message immediately,
and then begins a periodic timer at the specified rate. Each subsequent message
transmission is based on the timer, and uses the most recent sample provided by CAN
Write.

If the initialized sample rate is zero, the message is transmitted immediately each time
you call CAN Write.

Because all channels of a message are transmitted on the network as a unit, CAN Write
enforces the following rules:

• You cannot write the same message in more than one Output task.

• You can write more than one message in a single Output task.

• You can write a subset of channels for a message in a single Output task. For
channels that are not included in the task, the Default Value is transmitted in the
CAN message. Because this Poly VI writes only one channel, the Default Value
will always be used for any remaining channels in the associated message.

For many applications, the most straightforward technique is to assign a single Output
task for each message you want to transmit. In each task, include all channels of that
message in the channel list. This ensures that you can provide new samples for the entire
message with each CAN Write.

Multi-Chan Single-Samp 1D Dbl

Writes an array, one entry for each channel initialized in channel list. Each entry consists
of a single sample.

The messages transmitted by CAN Write are determined by the associated channel list.
If all channels are contained in a single message, only that message is transmitted. If a
few channels are contained in one message, and the remaining channels are contained in
a second message, two messages are transmitted.

If the initialized sample rate is greater than zero, the task transmits associated CAN
messages periodically at the specified rate. The first CAN Write transmits messages
immediately, and then begins a periodic timer at the specified rate. Each subsequent
transmission of messages is based on the timer and uses the most recent samples provided
by CAN Write.

If the initialized sample rate is zero, the messages are transmitted immediately each time
you call CAN Write.

Chapter 5 Channel API for LabVIEW — CAN Write.vi

NI-CAN Hardware and Software Manual 5-66 ni.com

Because all channels of a message are transmitted on the network as a unit, CAN Write
enforces the following rules:

• You cannot write the same message in more than one Output task.

• You can write more than one message in a single Output task.

• You can write a subset of channels for a message in a single Output task. For
channels that are not included in the task, the Default Value is transmitted in the
CAN message.

For many applications, the most straightforward technique is to assign a single Output
task for each message that you want to transmit. In each task, include all channels of that
message in the channel list. This ensures that you can provide new samples for the entire
message with each CAN Write.

Single-Chan Multi-Samp 1D Dbl

Writes an array of samples for the first channel initialized in channel list.

If the initialized sample rate is greater than zero, the task transmits a CAN message
periodically at the specified rate. This Poly VI is used to transmit a sequence of messages
periodically, with a unique sample value in each message. The first CAN Write transmits
a message immediately using the first sample in the array, and then begins a periodic
timer at the specified rate. Each subsequent message transmission is based on the timer,
and uses the next sample in the array. After the final sample in the array has been
transmitted, subsequent behavior is determined by the Behavior After Final Output
property. The default Behavior After Final Output is to retransmit the final sample each
period until CAN Write is called again.

If the initialized sample rate is zero, a message is transmitted immediately for each entry
in the array, with as little delay as possible between messages. After the message for the
final sample is transmitted, no further transmissions occur until CAN Write is called
again, regardless of the Behavior After Final Output property.

NI-CAN uses a queue to store pending messages prior to transmission. CAN Write
returns after the final message is written to this queue. This provides some time for you
to call CAN Write again to provide a continual stream of samples. In LabVIEW RT,
because the time between successive CAN Write calls is deterministic, you can ensure
unique sample values in each message.

Because all channels of a message are transmitted on the network as a unit, CAN Write
enforces the following rules:

• You cannot write the same message in more than one Output task.

• You can write more than one message in a single Output task.

• You can write a subset of channels for a message in a single Output task. For
channels that are not included in the task, the Default Value is transmitted in the
CAN message. Because this Poly VI writes only one channel, the Default Value
will always be used for any remaining channels in the associated message.

Chapter 5 Channel API for LabVIEW — CAN Write.vi

© National Instruments Corporation 5-67 NI-CAN Hardware and Software Manual

For many applications, the most straightforward technique is to assign a single Output
task for each message that you want to transmit. In each task, include all channels of that
message in the channel list. This ensures that you can provide new samples for the entire
message with each CAN Write.

Multi-Chan Multi-Samp 2D Dbl

Writes an array, one entry for each channel initialized in channel list. Each entry consists
of an array of samples.

The messages transmitted by CAN Write are determined by the associated channel list.
If all channels are contained in a single message, only that message is transmitted. If a
few channels are contained in one message, and the remaining channels are contained in
a second message, two messages are transmitted.

If the initialized sample rate is greater than zero, the task transmits associated CAN
messages periodically at the specified rate. This Poly VI is used to transmit a sequence
of messages periodically, with unique sample values in each set of messages. The first
CAN Write transmits associated messages immediately using the first sample in each
channel’s array, and then begins a periodic timer at the specified rate. Each subsequent
transmission of messages is based on the timer, and uses the next sample in each
channel’s array. After the final sample in each channel’s array has been transmitted,
subsequent behavior is determined by the Behavior After Final Output property. The
default Behavior After Final Output is to retransmit the final sample each period until
CAN Write is called again.

If the initialized sample rate is zero, the task transmits associated messages immediately
for each entry in each channel’s array, with as little delay as possible between messages.
After the message for the final sample is transmitted, no further transmissions occur until
CAN Write is called again, regardless of the Behavior After Final Output property.

NI-CAN uses a queue to store pending messages prior to transmission. CAN Write
returns after the final message is written to this queue. This provides some time for you
to call CAN Write again to provide a continual stream of samples. In LabVIEW RT,
since the time between successive CAN Write calls is deterministic, you can ensure
unique sample values in each message.

Because all channels of a message are transmitted on the network as a unit, CAN Write
enforces the following rules:

• You cannot write the same message in more than one Output task.

• You can write more than one message in a single Output task.

• You can write a subset of channels for a message in a single Output task. For
channels that are not included in the task, the Default Value is transmitted in the
CAN message.

Chapter 5 Channel API for LabVIEW — CAN Write.vi

NI-CAN Hardware and Software Manual 5-68 ni.com

For many applications, the most straightforward technique is to assign a single Output
task for each message that you want to transmit. In each task, include all channels of that
message in the channel list. This ensures that you can provide new samples for the entire
message with each CAN Write.

Single-Chan Multi-Samp Wfm

Writes a single waveform for the first channel initialized in channel list.

The start time and delta time of the waveform does not affect the beginning of message
transmission. Therefore, this Poly VI type is equivalent to the Single-Chan Multi-Samp
1D Dbl Poly VI type.

Multi-Chan Multi-Samp 1D Wfm

Writes an array, one entry for each channel initialized in channel list. Each entry consists
of a single waveform.

The start time and delta time of each waveform does not affect the beginning of message
transmission. Therefore, this Poly VI type is equivalent to the Multi-Chan Multi-Samp
2D Dbl Poly VI type.

© National Instruments Corporation 6-1 NI-CAN Hardware and Software Manual

6
Channel API for C

This chapter lists the NI-CAN functions and describes the format, purpose and parameters.

Unless otherwise stated, each NI-CAN function suspends execution of the calling thread until
it completes. The functions in this chapter are listed alphabetically.

Section Headings
The following are section headings found in the Channel API for C functions.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function for the C programming language.

Input and Output
The input and output parameters for each function are listed.

Description
The description section gives details about the purpose and effect of each function.

Chapter 6 Channel API for C — Data Types

NI-CAN Hardware and Software Manual 6-2 ni.com

Data Types
The following data types are used with functions of the NI-CAN Channel API for C.

Table 6-1. NI-CAN Channel API for C, Data Types

Data Type Purpose

i8 8-bit signed integer

i16 16-bit signed integer

i32 32-bit signed integer

u8 8-bit unsigned integer

u16 16-bit unsigned integer

u32 32-bit unsigned integer

f32 32-bit floating point number

f64 64-bit floating point number

str ASCII string represented as an array of characters
terminated by null character ('\0'). This type is used
with output strings.

cstr ASCII string represented as an array of characters
terminated by null character ('\0'). This type is used
with input strings.

nctTypeTaskRef Reference to an initialized task. Refer to
nctInitStart for more information.

nctTypeStatus Status returned from NI-CAN functions. Refer to
ncStatusToString in the Frame API for more
information.

nctTypeTimestamp Timestamp. Refer to nctReadTimestamped for more
information.

Chapter 6 Channel API for C — List of Functions

© National Instruments Corporation 6-3 NI-CAN Hardware and Software Manual

List of Functions
The following table contains an alphabetical list of the NI-CAN Channel API for C functions.

Table 6-2. NI-CAN Channel API for C Functions

Function Purpose

nctClear Stop communication for the task and then clear the
configuration.

nctConnectTerminals Connect terminals in the CAN hardware.

nctCreateMessage Create a message configuration and associated channel
configurations within your application.

nctDisconnectTerminals Disconnect terminals in the CAN hardware.

nctGetNames Get an array of CAN channel names or message names
from MAX or a CAN database file.

nctGetProperty Get a property for the task, or a single channel within the
task.

nctInitialize Initialize a task for the specified channel list.

nctInitStart Initialize a task for the specified channel list, then start
communication.

nctRead Read samples from a CAN task initialized with Mode of
nctModeInput. Samples are obtained from received
CAN messages.

nctReadTimestamped Read samples from a CAN task initialized with Mode of
nctModeTimestampedInput.

nctSetProperty Set a property for the task, or a single channel within
the task.

nctStart Start communication for the specified task.

nctStop Stop communication for the specified task.

nctWrite Write samples to a CAN task initialized as
NctModeOutput. Samples are placed into transmitted
CAN messages.

Chapter 6 Channel API for C — nctClear

NI-CAN Hardware and Software Manual 6-4 ni.com

nctClear

Purpose
Stop communication for the task and then clear the configuration.

Format
nctTypeStatus nctClear(

nctTypeTaskRef TaskRef);

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

Outputs

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
The nctClear function must always be the final NI-CAN function called for each task. If
you do not use the nctClear function, the remaining task configurations can cause problems
in execution of subsequent NI-CAN applications.

If the cleared task is the last running task for the initialized Interface (refer to
nctInitStart), the nctClear function also stops communication on the interface’s CAN
controller and disconnects all terminal connections for that interface.

Because this function clears the task, TaskRef cannot be used with subsequent functions.
To change properties of a task and start again, use nctStop.

Chapter 6 Channel API for C — nctConnectTerminals

© National Instruments Corporation 6-5 NI-CAN Hardware and Software Manual

nctConnectTerminals

Purpose
Connect terminals in the CAN hardware.

Format
nctTypeStatus nctConnectTerminals(

nctTypeTaskRef TaskRef,
u32 SourceTerminal,
u32 DestinationTerminal,
u32 Modifiers);

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

SourceTerminal Specifies the connection source.

Once the connection is successfully created, behavior flows from
SourceTerminal to DestinationTerminal.

For a list of valid source/destination pairs, refer to the Valid
Combinations of Source/Destination section.

The following list describes each value of SourceTerminal:

nctSrcTermRTSI0 … nctSrcTermRTSI6

Selects a general-purpose RTSI line as source (input) of
the connection.

nctSrcTerm10HzResyncEvent

nctSrcTerm10HzResyncEvent selects a 10 Hz,
50 percent duty cycle clock. This slow rate is required for
resynchronization of CAN cards. On each pulse of the
resync clock, the other CAN card brings its clock into
sync.

By selecting RTSI0-6 as the DestinationTerminal,
you route the 10 Hz clock to synchronize with other
CAN cards. NI-DAQ cards cannot use the 10 Hz resync
clock, so this selection is limited to synchronization of
two or more CAN cards.

Chapter 6 Channel API for C — nctConnectTerminals

NI-CAN Hardware and Software Manual 6-6 ni.com

nctSrcTerm10HzResyncEvent applies to the entire
CAN card, including both interfaces of a 2-port CAN
card. The CAN card is specified by the task interface,
such as the Interface input to nctInitialize.

nctSrcTermStartTrigEvent

nctSrcTermStartTrigEvent selects the start trigger,
the event that begins sampling for tasks.

The start trigger is the same for all tasks using a given
interface, such as the Interface input to
nctInitialize.

In the default (disconnected) state of the
nctDestTermStartTrig destination, the start trigger
occurs when communication begins on the interface.

By selecting RTSI0-6 as the DestinationTerminal,
you route the start trigger of this CAN card to the start
trigger of other CAN or DAQ cards. This ensures that
sampling begins at the same time on both cards. For
example, you can synchronize two CAN cards by
routing nctSrcTermStartTrigEvent as the
SourceTerminal on one CAN card, and then
routing nctDestTermStartTrig as the
DestinationTerminal on the other CAN card, with
both cards using the same RTSI line for the connections.

DestinationTerminal Specifies the destination of the connection.

The following list describes each value of
DestinationTerminal:

nctDestTermRTSI0 … nctDestTermRTSI6

Selects a general-purpose RTSI line as destination
(output) of the connection.

nctDestTerm10HzResync

nctDestTerm10HzResync instructs the CAN card to
use a 10 Hz, 50 percent duty cycle clock to resynchronize
its local timebase. This slow rate is required for
resynchronization of CAN cards. On each pulse of the
resync clock, this CAN card brings its local timebase into
sync.

Chapter 6 Channel API for C — nctConnectTerminals

© National Instruments Corporation 6-7 NI-CAN Hardware and Software Manual

When synchronizing to an E-Series MIO card, a
typical use of this value is to use RTSI0-6 as the
SourceTerminal, then use NI-DAQ functions to
program the MIO card’s Counter 0 to generate a 10 Hz
50 percent duty cycle clock on the RTSI line.

When synchronizing to a CAN card, a typical use of
this value is to use RTSI0-6 as the SourceTerminal,
then route the other CAN card’s
nctSrcTerm10HzResyncEvent as the
SourceTerminal to the same RTSI line.

nctDestTerm10HzResync applies to the entire CAN
card, including both interfaces of a 2-port CAN card. The
CAN card is specified by the task interface, such as the
Interface input to nctInitialize.

The default (disconnected) state of this destination
means the CAN card does not resynchronize its local
timebase.

nctDestTermStartTrig

nctDestTermStartTrig selects the start trigger,
the event that begins sampling for tasks.

The start trigger is the same for all tasks using a
given interface, such as the Interface input to
nctInitialize.

By selecting RTSI0-6 as the SourceTerminal, you
route the start trigger from another CAN or DAQ card.
This ensures that sampling begins at the same time on
both cards. For example, you can synchronize with an
E-Series DAQ MIO card by routing the MIO card’s AI
start trigger to a RTSI line and then routing the same
RTSI line with nctDestTermStartTrig as the
DestinationTerminal on the CAN card.

The default (disconnected) state of this destination
means the start trigger occurs when communication
begins on the interface. Because communication begins
when the first task of the interface is started, this does not
synchronize sampling with other NI cards.

Chapter 6 Channel API for C — nctConnectTerminals

NI-CAN Hardware and Software Manual 6-8 ni.com

Modifiers Provides optional connection information for certain
source/destination pairs. The current release of NI-CAN does not
use this information for any source/destination pair, so you must
pass Modifiers as zero.

Outputs

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
This VI connects a specific pair of source/destination terminals. One of the terminals is
typically a RTSI signal, and the other terminal is an internal terminal in the CAN hardware.
By connecting internal terminals to RTSI, you can synchronize the CAN card with another
hardware product such as an NI-DAQ card.

The most common uses of RTSI synchronization are demonstrated by the CAN/DAQ
programming examples.

When the final task for a given interface is cleared with nctClear, NI-CAN disconnects all
terminal connections for that interface. Therefore, the nctDisconnectTerminals function
is not required for most applications. NI-DAQ terminals remain connected after the tasks are
cleared, so you must disconnect NI-DAQ terminals manually at the end of your application.

For a list of valid source/destination pairs, refer to the following section.

Valid Combinations of Source/Destination
Table 6-3 lists all valid combinations of SourceTerminal and DestinationTerminal.

NI-CAN hardware have the following limitations.

• PXI cards do not support RTSI 6.

• Signals received from a RTSI source cannot occur faster than 1 kHz. This prevents the
card from receiving a 10 MHz or 20 MHz timebase, such as provided by NI E-Series
MIO hardware.

Chapter 6 Channel API for C — nctConnectTerminals

© National Instruments Corporation 6-9 NI-CAN Hardware and Software Manual

• Signals received from a RTSI source must be at least 100 µs in length to be detected. This
prevents the card from receiving triggers in the nanoseconds range, such as the AI trigger
provided by NI E-Series MIO hardware.

Table 6-3. Valid Combinations of Source/Destination

Source

Destination

RTSI0 to RTSI6 10 Hz Resync Start Trigger

RTSI0 to RTSI6 — X X

10 Hz Resync Event X — X

Start Trigger Event X — —

Chapter 6 Channel API for C — nctCreateMessage

NI-CAN Hardware and Software Manual 6-10 ni.com

nctCreateMessage

Purpose
Create a message configuration and associated channel configurations within your
application.

Format
nctTypeStatus nctCreateMessage(

nctTypeMessageConfig MessageConfig,
u32 NumberOfChannels,
nctTypeChannelConfig * ChannelConfigList,
u32 Interface,
u32 Mode,
f64 SampleRate,
nctTypeTaskRef * TaskRef)

Inputs
MessageConfig Configures properties for a new message. This function creates a

task for a single message with one or more channels. You provide
the properties in a C struct.

The properties are similar to the message properties in MAX:

u32 MsgArbitrationID

Configures the arbitration ID of the message.

Use the Extended property to specify whether
the ID is standard (11-bit) or extended (29-bit).

u32 Extended

Configures a Boolean value that indicates
whether the message arbitration ID is standard
11-bit format (0) or extended 29-bit format (1).

u32 MsgDataBytes

Configures the number of data bytes in the
message. The range is 0 to 8.

NumberOfChannels Specifies the number of channel configurations you provide in
ChannelConfigList.

Chapter 6 Channel API for C — nctCreateMessage

© National Instruments Corporation 6-11 NI-CAN Hardware and Software Manual

ChannelConfigList Configures the list of channels for the new message.
ChannelConfigList is an array of a C struct, with one
C struct for each channel.

The properties of each channel are similar to the channel
properties in MAX:

u32 StartBit

Configures the starting bit position in the
message. The range is 0 (lowest bit in first byte),
to 63 (highest bit in last byte).

u32 NumBits

Configures the number of bits in the message.
The range is 0 to 64.

u32 DataType

Configures the channel’s data type in the
message. Values are nctDataSigned,
nctDataUnsigned, and nctDataFloat.

u32 ByteOrder

Configures the channel’s byte order in the
message. Values are nctOrderIntel
(little-endian), and nctOrderMotorola
(big-endian).

f64 ScalingFactor

Configures the scaling factor used to convert
raw bits of the message to/from scaled
floating-point units. The scaling factor is the A
in the linear scaling formula AX + B, where X is
the raw data, and B is the scaling offset.

f64 ScalingOffset

Configures the scaling offset used to convert
raw bits of the message to/from scaled
floating-point units. The scaling offset is the B
in the linear scaling formula AX + B, where X is
the raw data, and A is the scaling factor.

Chapter 6 Channel API for C — nctCreateMessage

NI-CAN Hardware and Software Manual 6-12 ni.com

f64 MaxValue

Configures the maximum value of the channel
in scaled floating-point units.

The nctRead and nctWrite functions do not
coerce samples when converting to/from CAN
messages. You can use this value with the
user-interface functions of your development
environment to set the range of front-panel
controls and indicators.

f64 MinValue

Configures the minimum value of the channel
in scaled floating-point units.

The nctRead and nctWrite functions do not
coerce samples when converting to/from CAN
messages. You can use this value with the
user-interface functions of your development
environment to set the range of front-panel
controls and indicators.

f64 DefaultValue

Configures the default value of the channel in
scaled floating-point units.

For information on how the DefaultValue is
used, refer to the nctRead and nctWrite
functions.

const str Unit

Configures the unit string of the channel. The
string is no more than 64 characters in length.

You can use this value to display units (such as
volts or RPM) along with the channel’s
samples.

Interface Specifies the CAN interface to use for this task.

The interface input uses an enumeration in which value 0 selects
CAN0, value 1 selects CAN1, and so on.

Chapter 6 Channel API for C — nctCreateMessage

© National Instruments Corporation 6-13 NI-CAN Hardware and Software Manual

The default baud rate for the Interface is defined within MAX,
but you can change it by setting the nctPropIntfBaudRate
property with nctSetProperty.

Mode Specifies the I/O mode for the task:

nctModeInput

Input channel data from received CAN messages. Use
the nctRead function to obtain input samples as
single-point, array, or waveform.

Use this input mode to read waveforms of timed samples,
such as for comparison with NI-DAQ waveforms. You
can also use this input mode to read a single point from
the most recent message, such as for control or
simulation.

nctModeOutput

Output channel data to CAN messages for transmit. Use
the nctWrite function to write output samples as
single-point, array, or waveform.

nctModeTimestampedInput

Input channel data from received CAN messages.
Use the nctRead function to obtain input samples
as an array of sample/timestamp pairs (refer to
nctReadTimestamped).

Use this input mode to read samples with timestamps
that indicate when each message is received from the
network.

SampleRate Specifies the timing to use for samples of the task. The sample rate
is specified in Hertz (samples per second). A sample rate of zero
means to sample immediately.

For Mode of NctModeInput, SampleRate of zero means
nctRead returns a single point from the most recent message
received, and greater than zero means nctRead returns samples
timed at the specified rate.

For Mode of NctModeOutput, SampleRate of zero means CAN
messages transmit immediately when nctWrite is called, and
greater than zero means CAN messages are transmitted
periodically at the specified rate.

Chapter 6 Channel API for C — nctCreateMessage

NI-CAN Hardware and Software Manual 6-14 ni.com

For Mode of NctModeTimestampedInput, SampleRate is
ignored.

Outputs
TaskRef Use TaskRef with all subsequent functions to reference the task.

Pass this task reference to nctStart before you read or write
samples for the message.

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
To use message and channel configurations from MAX or a CAN database, use the
nctInitStart or nctInitialize functions. The nctCreateMessage function provides
an alternative in which you create the message and channel configurations within your
application, without use of MAX or a CAN database.

nctCreateMessage returns a task reference you wire to nctStart to start communication
for the message and its channels.

Chapter 6 Channel API for C — nctDisconnectTerminals

© National Instruments Corporation 6-15 NI-CAN Hardware and Software Manual

nctDisconnectTerminals

Purpose
Disconnect terminals in the CAN hardware.

Format
nctTypeStatus nctDisconnectTerminals(

nctTypeTaskRef TaskRef,
u32 SourceTerminal,
u32 DestinationTerminal,
u32 Modifiers);

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

SourceTerminal Specifies the source of the connection.

For a description of values for SourceTerminal, refer to
nctConnectTerminals.

DestinationTerminal Specifies the destination of the connection.

For a description of values for DestinationTerminal, refer to
nctConnectTerminals.

Modifiers Provides optional connection information for certain
source/destination pairs. The current release of NI-CAN does not
use this information for any source/destination pair, so you must
pass Modifiers as zero.

Outputs

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Chapter 6 Channel API for C — nctDisconnectTerminals

NI-CAN Hardware and Software Manual 6-16 ni.com

Description
This function disconnects a specific pair of source/destination terminals you previously
connected with nctConnectTerminals.

When the final task for a given interface is cleared with nctClear, NI-CAN disconnects all
terminal connections for that interface. Therefore, the nctDisconnectTerminals function
is not required for most applications. You typically use this function to change RTSI
connections dynamically while your application is running. First use nctStop to stop all
tasks for the interface, then use nctDisconnectTerminals and nctConnectTerminals
to adjust RTSI connections, then nctStart to restart sampling.

Chapter 6 Channel API for C — nctGetNames

© National Instruments Corporation 6-17 NI-CAN Hardware and Software Manual

nctGetNames

Purpose
Get an array of CAN channel names or message names from MAX or a CAN database file.

Format
nctTypeStatus nctGetNames(

cstr FilePath,
u32 Mode,
cstr MessageName,
u32 SizeofChannelList,
str ChannelList);

Inputs
FilePath FilePath is an optional path to a CAN database file from which

to get channel names. The file must use either .DBC or .NCD
extension. Files with extension .DBC use the CANdb database
format. Files with extension .NCD use the NI-CAN database
format. You can generate NI-CAN database files from the Save
Channels or FP1300 Config selection in MAX.

If you pass NULL or empty-string to FilePath, this function gets
the channel names from MAX. The MAX CAN channels are in
the MAX CAN Channels listing within Data Neighborhood.

Mode Specifies the type of names to return.

nctGetNamesModeChannels

Return list of channel names. You can pass the returned
ChannelList to nctInitStart.

nctGetNamesModeMessages

Return list of message names.

MessageName MessageName is an optional input that filters the names for a
specific message. If you pass NULL or empty-string to
MessageName, this function returns all names in the database.
If you pass a non empty string, the ChannelList output is
limited to channels of the specified message.

This input applies to Mode of nctGetNamesModeChannels only.
It is ignored for Mode of nctGetNamesModeMessages.

SizeofChannelList Number of bytes allocated for the ChannelList output.

Chapter 6 Channel API for C — nctGetNames

NI-CAN Hardware and Software Manual 6-18 ni.com

If all of the channel names do not fit in the allocated
ChannelList, this function returns as much as possible with an
error.

Use the nctGetNamesLength function to determine the proper
SizeofChannelList.

Outputs
ChannelList Returns the comma-separated list of channel names.

Each name in ChannelList uses the minimum syntax required
to properly initialize:

• If FilePath is wired, nctGetNames prepends the file path
to the first name in ChannelList, with a double colon
separating the file path and channel name.

• If a channel name is used within only one message in the
database, nctGetNames returns only the channel name in the
list. If a channel name is used within multiple messages,
nctGetNames prepends the message name to that channel
name, with a decimal point separating the message and
channel name. This syntax ensures that the duplicate channel
is associated to a single message in the database.

For more information on the syntax conventions for channel
names, refer to nctInitStart.

To start a task for all channels returned from nctGetNames, pass
ChannelList to the nctInitStart function to start a task.

You can also use ChannelList with a user-interface control such
as a ring or list box. The user of your application can then select
names using this control, and the selected names can be passed to
nctInitStart.

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Chapter 6 Channel API for C — nctGetNamesLength

© National Instruments Corporation 6-19 NI-CAN Hardware and Software Manual

nctGetNamesLength

Purpose
Get the required size for a specified list of channels to allocate an array for the ChannelList
input of nctGetNames.

Format
nctTypeStatus nctGetNamesLength(

cstr FilePath,
u32 Mode,
cstr MessageName,
u32 * SizeofChannelList);

Inputs
FilePath FilePath is an optional path to a CAN database file from which

to get channel names. The file must use either the.DBC or .NCD
extension.

If you pass NULL or empty-string to FilePath, this function
examines the channel names from MAX.

For more information on FilePath, refer to nctGetNames.

Mode Specifies the type of names to examine.

nctGetNamesModeChannels

Examine the list of channel names.

nctGetNamesModeMessages

Examine the list of message names.

MessageName MessageName is an optional input that filters the names for a
specific message. If you pass NULL or empty-string to
MessageName, this function returns all names in the database.
If you pass a nonempty string, the SizeofChannelList output
is limited to channels of the specified message.

This input applies to Mode of nctGetNamesModeChannels
only. It is ignored for Mode of nctGetNamesModeMessages.

Chapter 6 Channel API for C — nctGetNamesLength

NI-CAN Hardware and Software Manual 6-20 ni.com

Outputs
SizeofChannelList Number of bytes required for nctGetNames to return all names

for the specified FilePath, Mode, and MessageName. After
calling nctGetNamesLength, you can allocate an array of size
SizeofChannelList, then pass that array to nctGetNames
using the same input parameters. This ensures that nctGetNames
will return all names without error.

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Chapter 6 Channel API for C — nctGetProperty

© National Instruments Corporation 6-21 NI-CAN Hardware and Software Manual

nctGetProperty

Purpose
Get a property for the task, or a single channel within the task.

Format
nctTypeStatus nctGetProperty(

nctTypeTaskRef TaskRef,
cstr ChannelName,
u32 PropertyId,
u32 SizeofValue,
void * Value,

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

ChannelName Specifies an individual channel within the task. If you pass
empty-string to ChannelName, this means the property applies
to the entire task, not a specific channel.

Properties that begin with the word Channel or Message do not
apply to the entire task, but an individual channel or message
within the task. For these channel-specific properties, you must
pass the name of a channel from channel list into the
ChannelName input.

For properties that do not begin with the word Channel or
Message, you must pass empty-string (" ") into ChannelName.
You must not pass NULL into ChannelName.

PropertyId Selects the property to get.

For a description of each property, including its data type and
PropertyId, refer to the Properties section.

SizeofValue Number of bytes allocated for the Value output. This size
normally depends on the data type listed in the property’s
description.

Chapter 6 Channel API for C — nctGetProperty

NI-CAN Hardware and Software Manual 6-22 ni.com

Outputs
Value Returns the property value. PropertyId determines the data type

of the returned value.

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the function of the Frame API to obtain a descriptive string for the return value. The
ncStatusToString and ncGetHardwareInfo functions are the only Frame API functions
that can be called within a Channel API application.

Properties
u32 nctPropNumChannels

Returns the number of channels initialized in channel list. This is the number of array
entries required when using nctRead or nctWrite.

f64 nctPropTimeout

Returns the nctPropTimeout property, which is used with some input task
configurations. For more information, refer to the nctPropTimeout property in
nctSetProperty.

u32 nctPropSamplesPending

Returns the number of samples available to be read using nctRead. If you set the
NumberOfSamplesToRead input of nctRead to this value, nctRead returns
immediately without waiting.

This property applies only to tasks initialized with Mode of NctModeInput, and
SampleRate greater than zero. For all other configurations, it returns an error.

u32 nctPropBehaviorAfterFinalOut

Returns the nctPropBehaviorAfterFinalOut property, which is used with some
output task configurations. For more information, refer to the
nctPropBehaviorAfterFinalOut property in nctSetProperty.

u32 nctPropInterface

Returns the Interface initialized for the task, such as with the nctInitStart
function.

Chapter 6 Channel API for C — nctGetProperty

© National Instruments Corporation 6-23 NI-CAN Hardware and Software Manual

u32 nctPropMode

Returns the Mode initialized for the task, such as with the nctInitStart function.

f64 nctPropSampleRate

Returns the SampleRate initialized for the task, such as with the nctInitStart
function.

u32 nctPropMsgArbitrationId

Returns the arbitration ID of the channel’s message.

To determine whether the ID is standard (11-bit) or extended (29-bit), get the
nctPropMsgIsExtended property.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

u32 nctPropMsgIsExtended

Returns a Boolean value that indicates whether the arbitration ID of the channel’s
message is standard 11-bit format (0) or extended 29-bit format (1).

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

u32 nctPropMsgByteLength

Returns the number of data bytes in the channel’s message. The range is 0 to 8.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

str nctPropMsgName

Returns the name of the channel’s message. The string is no more than 80 characters in
length.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

u32 nctPropChanStartBit

Returns the starting bit position in the message. The range is 0 (lowest bit in first byte),
to 63 (highest bit in last byte).

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

u32 nctPropChanNumBits

Returns the number of bits in the message. The range is 0 to 64.

Chapter 6 Channel API for C — nctGetProperty

NI-CAN Hardware and Software Manual 6-24 ni.com

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

u32 nctPropChanByteOrder

Returns the channel’s byte order in the message. Values are nctOrderIntel
(little-endian), and nctOrderMotorola (big-endian).

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

u32 nctPropChanDataType

Returns the channel’s data type in the message. Values are nctDataSigned,
nctDataUnsigned, and nctDataFloat.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

f64 nctPropChanScalFactor

Returns the scaling factor used to convert raw bits of the message to/from scaled
floating-point units. The scaling factor is the A in the linear scaling formula AX + B,
where X is the raw data, and B is the scaling offset.

CAN messages use the raw data, and the nctRead and nctWrite functions provide
access to samples in floating-point units.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

f64 nctPropChanScalOffset

Returns the scaling offset used to convert raw bits of the message to/from scaled
floating-point units. The scaling offset is the B in the linear scaling formula AX + B,
where X is the raw data, and A is the scaling factor.

CAN messages use the raw data, and the nctRead and nctWrite functions provide
access to samples in floating-point units.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

f64 nctPropChanMinValue

Returns the minimum value of the channel in scaled floating-point units.

The nctRead and nctWrite functions do not coerce samples when converting to/from
CAN messages. You can use this value with the user-interface functions of your
development environment to set the range of front-panel controls and indicators.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

Chapter 6 Channel API for C — nctGetProperty

© National Instruments Corporation 6-25 NI-CAN Hardware and Software Manual

f64 nctPropChanMaxValue

Returns the maximum value of the channel in scaled floating-point units.

The nctRead and nctWrite functions do not coerce samples when converting to/from
CAN messages. You can use this value with the user-interface functions of your
development environment to set the range of front-panel controls and indicators.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

f64 nctPropChanDefaultValue

Returns the default value of the channel in scaled floating-point units.

For information on how nctPropChanDefaultValue is used, refer to the nctRead and
nctWrite functions.

The value of this property is originally set within MAX. If the channel is initialized
directly from a CAN database, the value is 0.0 by default, but it can be changed using
nctSetProperty.

str nctPropChanUnitString

Returns the unit string of the channel. The string is no more than 80 characters in length.

You can use this value to display units (such as volts or RPM) along with the channel’s
samples.

The value of this property is originally set within MAX or the CAN database and cannot
be changed using nctSetProperty.

u32 nctPropHwSerialNum

Returns the hardware serial number for the NI-CAN hardware that contains Interface.

u32 nctPropHwFormFactor

Returns the hardware form factor for the NI-CAN hardware that contains Interface.
Values are nctHwFormFactorPCI, nctHwFormFactorPXI,
nctHwFormFactorPCMCIA, and nctHwFormFactorAT.

u32 nctPropHwTransceiver

Returns the hardware form factor for the NI-CAN hardware that contains Interface.
Values are nctHwTransceiverHS, and nctHwTransceiverLS.

This property is not supported on the PCMCIA form factor.

u32 nctPropVersionMajor

Returns the major version of the NI-CAN software, such as the 2 in version 2.1.5.

Chapter 6 Channel API for C — nctGetProperty

NI-CAN Hardware and Software Manual 6-26 ni.com

u32 nctPropVersionMinor

Returns the minor version of the NI-CAN software, such as the 1 in version 2.1.5.

u32 nctPropVersionUpdate

Returns the update version of the NI-CAN software, such as the 5 in version 2.1.5.

u32 nctPropVersionPhase

Returns the phase of the NI-CAN software. Values are nctPhaseDevelopment,
nctPhaseAlpha, nctPhaseBeta, and nctPhaseRelease. Versions of NI-CAN in
hardware kits or on ni.com will always be nctPhaseRelease.

u32 nctPropVersionBuild

Returns the build number of the NI-CAN software. This number applies to
nctPhaseDevelopment, nctPhaseAlpha, and nctPhaseBeta phase only, and
should be ignored for nctPhaseRelease phase.

str nctPropVersionComment

Returns a comment string for the NI-CAN software. If you received a custom release of
NI-CAN from National Instruments, this comment often describes special features of the
release.

u32 nctPropIntfBaudRate

Returns the baud rate in use by the Interface.

Basic baud rates such as 125000 and 500000 are specified as the numeric rate.

Advanced baud rates are specified as 8000XXYY hex, where YY is the value of Bit Timing
Register 0 (BTR0), and XX is the value of Bit Timing Register 1 (BTR1). For more
information, refer to the Interface Properties dialog in MAX.

The value of this property is originally set within MAX, but it can be changed using
nctSetProperty.

Chapter 6 Channel API for C — nctInitialize

© National Instruments Corporation 6-27 NI-CAN Hardware and Software Manual

nctInitialize

Purpose
Initialize a task for the specified channel list.

Format
nctTypeStatus nctInitialize(

cstr ChannelList,
u32 Interface,
u32 BaudRate,
u32 Mode,
f64 SampleRate,
nctTypeTaskRef * TaskRef);

Inputs
ChannelList Comma-separated list of channel names to initialize as a task.

For more information, refer to the channel list input of
nctInitStart.

Interface Specifies the CAN interface to use for this task.

The interface input uses an enumeration in which value 0 selects
CAN0, value 1 selects CAN1, and so on.

If you pass the special value 65535 to Interface, this function
uses the default interface as defined in the MAX configuration. If
the default interface in MAX is All, or if one or more channels in
ChannelList specifies a filepath, the Interface is a required
input to this function.

The Channel API and Frame API cannot use the same CAN
network interface simultaneously. If the CAN network interface is
already initialized in the Frame API, this function returns an error.

Mode Specifies the I/O mode for the task:

nctModeInput

Input channel data from received CAN messages. Use
the nctRead function to obtain input samples as
single-point, array, or waveform.

Use this input mode to read waveforms of timed samples,
such as for comparison with NI-DAQ waveforms. You
can also use this input mode to read a single point from

Chapter 6 Channel API for C — nctInitialize

NI-CAN Hardware and Software Manual 6-28 ni.com

the most recent message, such as for control or
simulation.

For this mode, the channels in ChannelList can be
contained in multiple messages.

nctModeOutput

Output channel data to CAN messages for transmit. Use
the nctWrite function to write output samples as
single-point, array, or waveform.

For this mode, there are restrictions on using channels in
ChannelList that are contained in multiple messages.
Refer to nctWrite for more information.

nctModeTimestampedInput

Input channel data from received CAN messages.
Use the nctRead function to obtain input samples
as an array of sample/timestamp pairs (refer to
nctReadTimestamped).

Use this input mode to read samples with timestamps
that indicate when each message is received from the
network.

For this mode, the channels in ChannelList must be
contained in a single message.

SampleRate Specifies the timing to use for samples of the task. The sample rate
is specified in Hertz (samples per second). A sample rate of zero
means to sample immediately.

For Mode of NctModeInput, SampleRate of zero means
nctRead returns a single point from the most recent message
received, and greater than zero means nctRead returns samples
timed at the specified rate.

For Mode of NctModeOutput, SampleRate of zero means CAN
messages transmit immediately when nctWrite is called, and
greater than zero means CAN messages are transmitted
periodically at the specified rate.

For Mode of NctModeTimestampedInput, SampleRate is
ignored.

Chapter 6 Channel API for C — nctInitialize

© National Instruments Corporation 6-29 NI-CAN Hardware and Software Manual

Outputs
TaskRef Use TaskRef with all subsequent functions to reference the task.

Pass this task reference to nctStart before you read or write
samples for the message.

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
The nctInitialize function does not start communication. This enables you to use
nctSetProperty to change the task’s properties, or nctConnectTerminals to
synchronize CAN or DAQ cards. After you change properties or connections, use nctStart
to start communication for the task.

Chapter 6 Channel API for C — nctInitStart

NI-CAN Hardware and Software Manual 6-30 ni.com

nctInitStart

Purpose
Initialize a task for the specified channel list, then start communication.

Format
nctTypeStatus nctInitStart(

cstr ChannelList,
u32 Interface,
u32 BaudRate,
u32 Mode,
f64 SampleRate,
nctTypeTaskRef * TaskRef);

Inputs
ChannelList Comma-separated list of channel names to initialize as a task.

You can type in the channel list as a string constant, or you can
obtain the list from MAX or another CAN database by using the
nctGetNames function.

You can initialize the same ChannelList with different
Interface, Mode, or SampleRate, because each task reference
is unique.

The following paragraphs describe the syntax of each channel
name. Brackets indicate optional fields.

[filepath::][message.]channel

• filepath is the path to a CAN database file from which to
import the channel (signal) configurations. The filepath must
use Windows directory syntax, and must be followed by a
double-colon.

If filepath is not included, the channel configuration is
obtained from MAX. The MAX CAN channels are in the
MAX CAN Channels listing within Data Neighborhood.

Once you specify a filepath, it will continue to be applied to
subsequent names in the channel list until you specify a new
filepath. After using filepath for a CAN database file, you can
revert to using MAX by specifying an empty filepath (double
colon only).

Chapter 6 Channel API for C — nctInitStart

© National Instruments Corporation 6-31 NI-CAN Hardware and Software Manual

• message refers to the message in which the channel is
contained. The message name must be followed by a decimal
point.

If the channel name occurs in multiple messages, you must
specify the message name to identify the channel uniquely.
Within MAX, channels with the same name in multiple
messages are shown with a yellow exclamation point.

If the channel name is unique across all channels, the message
name is not required.

• channel refers to the channel (signal) name in MAX or the
filepath CAN database.

The following examples demonstrate the channel list syntax:

• List of channels from MAX, each channel name unique
across all messages.

myChan1,myChan2,myChan3

• List of channels from a CANdb file, each channel name
unique across all messages.

C:\MyCandb\MyChannels.DBC::myChan1

myChan2,myChan3

• List of channels from MAX, with one channel duplicated
across two messages. MyChan2 and MyChan3 must be unique
across all messages.

myMessage1.myChan1,myChan2,

myMessage2.myChan1,myChan3

• List of two channels from a CANdb file, then two channels
from MAX.

C:\MyCandb\MoreChannels.DBC::myChan1,

myChan2,::myChan3,myChan4

Interface Specifies the CAN interface to use for this task.

The interface input uses an enumeration in which value 0 selects
CAN0, value 1 selects CAN1, and so on.

If you pass the special value 65535 to Interface, this function
uses the default interface as defined in the MAX configuration.
If the default interface in MAX is All, or if one or more channels
in ChannelList specifies a filepath, the Interface is a
required input to this function.

Chapter 6 Channel API for C — nctInitStart

NI-CAN Hardware and Software Manual 6-32 ni.com

The Channel API and Frame API cannot use the same CAN
network interface simultaneously. If the CAN network interface is
already initialized in the Frame API, this function returns an error.

Mode Specifies the I/O mode for the task:

nctModeInput

Input channel data from received CAN messages. Use
the nctRead function to obtain input samples as
single-point, array, or waveform.

Use this input mode to read waveforms of timed samples,
such as for comparison with NI-DAQ waveforms. You
can also use this input mode to read a single point from
the most recent message, such as for control or
simulation.

For this mode, the channels in ChannelList can be
contained in multiple messages.

nctModeOutput

Output channel data to CAN messages for transmit. Use
the nctWrite function to write output samples as
single-point, array, or waveform.

For this mode, there are restrictions on using channels in
ChannelList that are contained in multiple messages.
Refer to nctWrite for more information.

nctModeTimestampedInput

Input channel data from received CAN messages.
Use the nctRead function to obtain input samples
as an array of sample/timestamp pairs (refer to
nctReadTimestamped).

For this mode, the channels in ChannelList must be
contained in a single message.

Use this input mode to read samples with timestamps
that indicate when each message is received from the
network.

SampleRate Specifies the timing to use for samples of the task. The sample rate
is specified in Hertz (samples per second). A sample rate of zero
means to sample immediately.

Chapter 6 Channel API for C — nctInitStart

© National Instruments Corporation 6-33 NI-CAN Hardware and Software Manual

For Mode of NctModeInput, SampleRate of zero means
nctRead returns a single point from the most recent message
received, and greater than zero means nctRead returns samples
timed at the specified rate.

For Mode of NctModeOutput, SampleRate of zero means CAN
messages transmit immediately when nctWrite is called, and
greater than zero means CAN messages are transmitted
periodically at the specified rate.

For Mode of NctModeTimestampedInput, SampleRate is
ignored.

Outputs
TaskRef Use TaskRef with all subsequent functions to reference the

running task. Because nctInitStart starts communication,
you can pass this task reference to nctRead or nctWrite.

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
The code for this function simply calls nctInitialize followed by nctStart. This
provides an easy way to start a list of channels.

The following list describes the scenarios for which nctInitStart cannot be used:

• If you need to set properties for the channels, use nctInitialize, then
nctSetProperty, then nctStart. The nctInitStart function starts
communication, and most channel properties cannot be changed after the task is started.

• If you need to synchronize tasks for multiple NI-CAN or NI-DAQ cards, use
nctInitialize, then nctConnectTerminals to synchronize, the nctStart to start
communication.

• If you need to create channel configurations entirely within your application, without
using MAX or a CAN database file, use nctCreateMessage, then nctStart. The
nctInitStart function accepts only channel names defined in MAX or a CAN
database file.

Chapter 6 Channel API for C — nctRead

NI-CAN Hardware and Software Manual 6-34 ni.com

nctRead

Purpose
Read samples from a CAN task initialized with Mode of nctModeInput. Samples are
obtained from received CAN messages. For an overview of nctRead, refer to the Read
section of Chapter 4, Using the Channel API.

Format
nctTypeStatus nctRead(

nctTypeTaskRef TaskRef,
u32 NumberOfSamplesToRead,
nctTypeTimestamp * StartTime,
nctTypeTimestamp * DeltaTime,
f64 * SampleArray,
u32 * NumberOfSamplesReturned);

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

The Mode initialized for the task must be NctModeInput.

NumberOfSamplesToRead Specifies the number of samples to read for the task. For
single-sample input, pass 1 to this parameter.

If the initialized SampleRate is zero, you must pass
NumberOfSamplesToRead no greater than 1. SampleRate of
zero means nctRead returns a single sample from the most recent
message(s) received.

Outputs
StartTime Returns the time of the first CAN sample in SampleArray.

This parameter is optional. If you pass NULL for the StartTime
parameter, the nctRead function proceeds normally.

If the initialized SampleRate is greater than zero, the
StartTime is determined by the sample timing.

If the initialized SampleRate is zero, the StartTime is zero,
because the most recent sample is returned regardless of timing.

StartTime uses the nctTypeTimestamp data type. The
nctTypeTimestamp data type is a 64-bit unsigned integer
compatible with the Microsoft Win32 FILETIME type. This

Chapter 6 Channel API for C — nctRead

© National Instruments Corporation 6-35 NI-CAN Hardware and Software Manual

absolute time is kept in a Coordinated Universal Time (UTC)
format. UTC time is loosely defined as the current date and
time of day in Greenwich England. Microsoft defines its UTC
time (FILETIME) as a 64-bit counter of 100 ns intervals that
have elapsed since 12:00 a.m., January 1, 1601. Because
nctTypeTimestamp is compatible with Win32 FILETIME,
you can pass it into the Win32 FileTimeToLocalFileTime
function to convert it to your local time zone, and then pass the
resulting local time to the Win32 FileTimeToSystemTime
function to convert to the Win32 SYSTEMTIME type. SYSTEMTIME
is a struct with fields for year, month, day, and so on. For more
information on Win32 time types and functions, refer to your
Microsoft Win32 documentation.

DeltaTime Returns the time between each sample in SampleArray.

This parameter is optional. If you pass NULL for the DeltaTime
parameter, the nctRead function proceeds normally.

If the initialized SampleRate is greater than zero, the
DeltaTime is determined by the sample timing.

If the initialized SampleRate is zero, the DeltaTime is zero,
because the most recent sample is returned regardless of timing.

DeltaTime uses the nctTypeTimestamp data type. The
delta time is a relative 64-bit counter of 100 ns intervals, not
an absolute UTC time. Nevertheless, you can use functions like
the Win32 FileTimeToSystemTime function to convert to the
Win32 SYSTEMTIME type. In addition, you can use the 32-bit
LowPart of DeltaTime to obtain a simple 100 ns count, because
SampleRates as slow as 0.4 Hz are still limited to a 32-bit 100 ns
count.

SampleArray Returns an array of arrays (2D array), one array for each channel
initialized in the task. Each channel’s array must have
NumberOfSamplesToRead entries allocated.

For example, if you call nctInitStart with ChannelList of
mych1,mych2,mych3, then call nctRead with
NumberOfSamplesToRead of 10, SampleArray must be
allocated as:

f64 SampleArray[3][10];

The order of channel entries in SampleArray is the same as the
order in the original ChannelList.

Chapter 6 Channel API for C — nctRead

NI-CAN Hardware and Software Manual 6-36 ni.com

If you need to determine the number of channels in the task after
initialization, get the nctPropNumChannels property for the
task reference.

If no message has been received since you started the task, the
default value of the channel (nctPropChanDefaultValue) is
returned in all entries of SampleArray.

NumberOfSamplesReturned indicates the number of samples
returned for each channel in SampleArray. The remaining entries
are left unchanged (zero).

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
When using Mode of nctModeInput, you can specify channels in ChannelList that span
multiple messages.

If the initialized SampleRate is greater than zero, this function returns an array of samples,
each of which indicates the value of the CAN channel at a specific point in time. The
nctRead function waits for these samples to arrive in time before returning. In other words,
the SampleRate specifies a virtual clock that copies the most recent value from CAN
messages for each sample time. The changes in sample values from message to message
enable you to view the CAN channel over time, such as for comparison with other CAN or
DAQ input channels.

If the initialized SampleRate is zero, nctRead returns a single sample from the most recent
message(s) received. To this single-point read, you must pass the NumberOfSamplesToRead
parameter as 1.

You can use the return value of nctRead to determine whether a new message has been
received since the previous call to nctRead (or nctStart). If no message has been received,
the warning code CanWarnOldData is returned. If a new message has been received, the
success code 0 is returned.

If no message has been received since you started the task, the default value of the channel
(nctPropChanDefaultValue) is returned in all entries of SampleArray.

The nctPropTimeout property is not used with nctRead.

Chapter 6 Channel API for C — nctReadTimestamped

© National Instruments Corporation 6-37 NI-CAN Hardware and Software Manual

nctReadTimestamped

Purpose
Read samples from a CAN task initialized with Mode of nctModeTimestampedInput. For
an overview of nctReadTimestamped, refer to the Read Timestamped section of Chapter 4,
Using the Channel API.

Format
nctTypeStatus nctReadTimestamped(

nctTypeTaskRef TaskRef,
u32 NumberOfSamplesToRead,
nctTypeTimestamp * TimestampArray,
f64 * SampleArray,
u32 * NumberOfSamplesReturned);

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

The Mode initialized for the task must be
NctModeTimestampedInput.

NumberOfSamplesToRead Specifies the number of samples to read for the task.

Outputs
TimestampArray Returns the time at which each corresponding sample in

SampleArray was received in a CAN message.

The timestamps are returned as an array of arrays (2D array), one
array for each channel initialized in the task. Each channel’s array
must have NumberOfSamplesToRead entries allocated.

For example, if you call nctInitStart with ChannelList of
mych1,mych2, then call nctReadTimestamped with
NumberOfSamplesToRead of 20, both TimestampArray and
SampleArray must be allocated as:

f64 TimestampArray[2][20];

f64 SampleArray[2][20];

The order of channel entries in TimestampArray is the same as
the order in the original ChannelList.

Chapter 6 Channel API for C — nctReadTimestamped

NI-CAN Hardware and Software Manual 6-38 ni.com

If you need to determine the number of channels in the task after
initialization, get the nctPropNumChannels property for the
task reference.

Each timestamp in TimestampArray uses the
nctTypeTimestamp data type. The nctTypeTimestamp
data type is a 64-bit unsigned integer compatible with the
Microsoft Win32 FILETIME type. This absolute time is kept in a
Coordinated Universal Time (UTC) format. UTC time is loosely
defined as the current date and time of day in Greenwich
England Microsoft defines its UTC time (FILETIME) as a
64-bit counter of 100 ns intervals that have elapsed since
12:00 a.m., January 1, 1601. Because nctTypeTimestamp is
compatible with Win32 FILETIME, you can pass it into the Win32
FileTimeToLocalFileTime function to convert it to your local
time zone, and then pass the resulting local time to the Win32
FileTimeToSystemTime function to convert to the Win32
SYSTEMTIME type. SYSTEMTIME is a struct with fields for year,
month, day, and so on. For more information on Win32 time types
and functions, refer to your Microsoft Win32 documentation.

SampleArray Returns the sample value(s) for each received CAN message.

The samples are returned as an array of arrays (2D array), one
array for each channel initialized in the task. Each channel’s array
must have NumberOfSamplesToRead entries allocated.

You must allocate SampleArray exactly as TimestampArray,
and the order of channel entries is the same for both.

NumberOfSamplesReturned Indicates the number of samples returned for each channel in
SampleArray, and the number of timestamps returned for
each channel in TimestampArray. The remaining entries are
left unchanged (zero).

Return Value
The return value indicates the function call status as a signed 32-bit integer.
Zero means the function executed successfully. A negative value specifies
an error, which means the function did not perform the expected behavior.
A positive value specifies a warning, which means the function performed
as expected, but a condition arose that may require your attention.

Use the ncStatusToString function of the Frame API to obtain a
descriptive string for the return value. The ncStatusToString and
ncGetHardwareInfo functions are the only Frame API functions that can
be called within a Channel API application.

Chapter 6 Channel API for C — nctReadTimestamped

© National Instruments Corporation 6-39 NI-CAN Hardware and Software Manual

Description
Each returned sample corresponds to a received CAN message for the
channels initialized in ChannelList. For each sample,
nctReadTimestamped returns the sample value and a timestamp that
indicates when the message was received.

When using Mode of nctModeTimestampedInput, you cannot specify
channels in ChannelList that span multiple messages.

Because the timing of samples returned by nctReadTimestamped is
determined by when the message is received, the initialized SampleRate
is not used.

The nctPropTimeout property determines whether this function waits for
the NumberOfSamplesToRead messages to arrive from the network. The
default value of nctPropTimeout is zero, but you can change it using the
nctSetProperty function.

If nctPropTimeout is greater than zero, the function will
wait for NumberOfSamplesToRead messages to arrive. If
NumberOfSamplesToRead messages are not received before the
nctPropTimeout expires, an error is returned.

If nctPropTimeout is zero, the function does not wait for messages,
but instead returns samples from the messages received since the
previous call to nctReadTimestamped. The number of samples returned
is indicated in the NumberOfSamplesReturned output, up to a maximum
of NumberOfSamplesToRead messages. If no new message has been
received, NumberOfSamplesReturned is 0, and the return value indicates
success.

Chapter 6 Channel API for C — nctSetProperty

NI-CAN Hardware and Software Manual 6-40 ni.com

nctSetProperty

Purpose
Set a property for the task, or a single channel within the task.

Format
nctTypeStatus nctSetProperty(

nctTypeTaskRef TaskRef,
cstr ChannelName,
u32 PropertyId,
u32 SizeofValue,
void * Value,

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

ChannelName Specifies an individual channel within the task. If you pass NULL
or empty-string to ChannelName, this means the property applies
to the entire task, not a specific channel.

Properties that begin with the word Channel or Message do not
apply to the entire task, but an individual channel or message
within the task. For these channel-specific properties, you must
pass the name of a channel from ChannelList into the
ChannelName input.

For properties that do not begin with the word Channel or
Message, you must pass empty-string (" ") into ChannelName.
You must not pass NULL into ChannelName.

PropertyId Selects the property to set.

For a description of each property, including its data type and
PropertyId, refer to the Properties section.

SizeofValue Number of bytes provided for the Value output. This size will
normally depend on the data type listed in the property’s
description.

Value Provides the property value. PropertyId determines the data
type of the value.

Chapter 6 Channel API for C — nctSetProperty

© National Instruments Corporation 6-41 NI-CAN Hardware and Software Manual

Outputs

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
You cannot set a property while the task is running. If you need to change a property prior to
starting the task, you cannot use nctInitStart. First call nctInitialize, followed by
nctSetProperty, and then nctStart. After you start the task, you can also change a
property by calling nctStop, followed by nctSetProperty, and then nctStart again.

Properties
f64 nctPropTimeout

Sets a time in milliseconds to wait for samples. The default value is zero.

Usage of the nctPropTimeout property depends on the initialized Mode of the task:

• The timeout value does not apply to an NctModeOutput task.

• The timeout value does not apply to an NctModeInput task. For
NctModeInput tasks initialized with SampleRate greater than zero, the
NumberOfSamplesToRead input to nctRead implicitly specifies the time to wait.
For NctModeInput tasks initialized with SampleRate equal to zero, the nctRead
function always returns available samples immediately, without waiting.

• The timeout value does apply to a NctModeTimestampedInput task. A timeout of
zero means to return available samples immediately. A timeout greater than zero
means nctRead will wait a maximum of nctPropTimeout milliseconds for
NumberOfSamplesToRead samples to become available before returning.

u32 nctPropBehaviorAfterFinalOut

The nctPropBehaviorAfterFinalOut property applies only to tasks initialized with
Mode of NctModeOutput, and SampleRate greater than zero. The value specifies the
behavior to perform after the final periodic sample is transmitted.

Chapter 6 Channel API for C — nctSetProperty

NI-CAN Hardware and Software Manual 6-42 ni.com

nctPropBehaviorAfterFinalOut uses the following values:

nctOutBehavRepeatFinalSample

Transmit messages for the final sample(s) repeatedly. The final messages are
transmitted periodically as specified by SampleRate.

If there is significant delay between subsequent calls to nctWrite, this value
means periodic messages continue between nctWrite calls, and messages with
the final sample’s data are repeated on the network.

nctOutBehavRepeatFinalSample is the default value of the
nctPropBehaviorAfterFinalOut property.

nctOutBehavCeaseTransmit

Cease transmit of messages until the next call to nctWrite.

If there is significant delay between subsequent calls to nctWrite, this value
means periodic messages cease between nctWrite calls, and the final sample’s
data is not repeated on the network.

f64 nctPropChanDefaultValue

Sets the default value of the channel in scaled floating-point units.

For information on how the nctPropChanDefaultValue is used, refer to the nctRead
and nctWrite functions.

The value of this property is originally set within MAX. If the channel is initialized
directly from a CAN database, the value is 0.0 by default, but it can be changed using
nctSetProperty.

u32 nctPropIntfBaudRate

Sets the baud rate in use by the Interface.

This property applies to all tasks initialized with the Interface.

You can specify the following basic baud rates as the numeric rate: 83333, 100000,
125000, 200000, 250000, 400000, 500000, 800000, and 1000000.

You can specify advanced baud rates as 8000XXYY hex, where YY is the value of Bit
Timing Register 0 (BTR0), and XX is the value of Bit Timing Register 1 (BTR1).
For more information, refer to the Interface Properties dialog in MAX.

The value of this property is originally set within MAX, but it can be changed using
nctSetProperty.

Chapter 6 Channel API for C — nctStart

© National Instruments Corporation 6-43 NI-CAN Hardware and Software Manual

nctStart

Purpose
Start communication for the specified task.

Format
nctTypeStatus nctStart(

nctTypeTaskRef TaskRef);

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from functions such as
nctInitialize, or nctCreateMessage.

Outputs

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
You must start communication for a task to use nctRead or nctWrite. After you start
communication, you can no longer change the task’s configuration with nctSetProperty
or nctConnectTerminals.

Chapter 6 Channel API for C — nctStop

NI-CAN Hardware and Software Manual 6-44 ni.com

nctStop

Purpose
Stop communication for the specified task.

Format
nctTypeStatus nctStop(

nctTypeTaskRef TaskRef);

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

Outputs

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
This function stops communication so you can change the task’s configuration, such as by
using nctSetProperty or nctConnectTerminals. After you change the configuration,
use nctStart to start again.

This function does not clear the configuration for the task; therefore, do not use it as the last
NI-CAN function in your application. The nctClear function must always be used as the
last NI-CAN function for each task.

Chapter 6 Channel API for C — nctWrite

© National Instruments Corporation 6-45 NI-CAN Hardware and Software Manual

nctWrite

Purpose
Write samples to a CAN task initialized as NctModeOutput. Samples are placed into
transmitted CAN messages. For an overview of nctWrite, refer to the Write section of
Chapter 4, Using the Channel API.

Format
nctTypeStatus nctWrite(

nctTypeTaskRef TaskRef,
u32 NumberOfSamplesToWrite,
f64 * SampleArray);

Inputs
TaskRef Task reference from the previous NI-CAN function. The task

reference is originally returned from nctInitStart,
nctInitialize, or nctCreateMessage.

The Mode initialized for the task must be NctModeOutput.

NumberOfSamplesToWrite Specifies the number of samples to write for the task.
For single-sample output, pass 1 to this parameter.

SampleArray Provides an array of arrays (2D array), one array for each channel
initialized in the task. Each channel’s array must have
NumberOfSamplesToWrite samples.

For example, if you call nctInitStart with ChannelList
of mych1,mych2,mych3, then call nctWrite with
NumberOfSamplesToWrite of 10, SampleArray must be
allocated as:

f64 SampleArray[3][10];

You must provide a valid sample value in each entry of the arrays.

The order of channel entries in SampleArray is the same as the
order in the original ChannelList.

To determine the number of channels in the task after
initialization, get the nctPropNumChannels property for the
task reference.

Chapter 6 Channel API for C — nctWrite

NI-CAN Hardware and Software Manual 6-46 ni.com

Outputs

Return Value
The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require your
attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the
return value. The ncStatusToString and ncGetHardwareInfo functions are the only
Frame API functions that can be called within a Channel API application.

Description
The associated ChannelList determines the messages transmitted by nctWrite. If all
channels are contained in a single message, only that message is transmitted. If a few channels
are contained in one message, and the remaining channels are contained in a second message,
then two messages are transmitted.

If the initialized SampleRate is greater than zero, the task transmits associated CAN
messages periodically at the specified rate. The first nctWrite transmits associated
messages immediately using the first sample in each channel’s array, and then begins
a periodic timer at the specified rate. Each subsequent transmission of messages is based
on the timer, and uses the next sample in each channel’s array. After the final sample
in each channel’s array has been transmitted, subsequent behavior is determined
by the nctPropBehaviorAfterFinalOut property. The default
nctPropBehaviorAfterFinalOut behavior is to retransmit the final sample each period
until nctWrite is called again.

If the initialized SampleRate is zero, the task transmits associated messages immediately for
each entry in each channel’s array, with as little delay as possible between messages. After
the message for the final sample is transmitted, no further transmissions occur until
nctWrite is called again, regardless of the nctPropBehaviorAfterFinalOut property.

NI-CAN uses a queue to store pending messages prior to transmission. nctWrite returns
after the final message is written to this queue. This provides some time for you to call
nctWrite again to provide a continual stream of samples.

Because all channels of a message are transmitted on the network as a unit, nctWrite
enforces the following rules:

• You cannot write the same message in more than one NctModeOutput task.

• You can write more than one message in a single NctModeOutput task.

Chapter 6 Channel API for C — nctWrite

© National Instruments Corporation 6-47 NI-CAN Hardware and Software Manual

• You can write a subset of channels for a message in a single NctModeOutput task.
For channels that are not included in the task, the channel default value
(nctPropChanDefaultValue) is transmitted in the CAN message.

For many applications, the most straightforward technique is to assign a single
NctModeOutput task for each message you want to transmit. In each task, include all
channels of that message in the ChannelList. This ensures you can provide new samples
for the entire message with each nctWrite.

© National Instruments Corporation 7-1 NI-CAN Hardware and Software Manual

7
Using the Frame API

This chapter provides information to help you get started with the
Frame API.

Choose Which Objects To Use
An application written for the NI-CAN Frame API communicates on the
network by using various objects. Which Frame API objects to use depends
largely on the needs of your application. The following sections discuss the
objects provided by the Frame API, and reasons why you might use each
class of object.

Using CAN Network Interface Objects
The CAN Network Interface Object encapsulates a physical interface
to a CAN network, usually a CAN port on an AT, PCI, PCMCIA or
PXI card.

You use the CAN Network Interface Object to read and write complete
CAN frames. As a CAN frame arrives from over the network, it can
be placed into the read queue of the CAN Network Interface Object.
You can retrieve CAN frames from this read queue using the ncRead
or ncReadMult function. The read functions provide a timestamp of when
the frame was received, the arbitration ID of the frame, the type of frame
(data, remote, or RTSI), the data length, and the data bytes. You can also
use the CAN Network Interface Object to write CAN frames using the
ncWrite function.

Some possible uses for the CAN Network Interface Object include the
following:

• You can use the read queue to log all CAN frames transferred across
the network. This log is useful when you need to view CAN traffic to
verify that all CAN devices are functioning properly.

• You can use the write queue to transmit a sequence of CAN frames in
quick succession.

Chapter 7 Using the Frame API

NI-CAN Hardware and Software Manual 7-2 ni.com

• You can read and write CAN frames for access to configuration
settings within a device. Because such settings generally are not
accessed during normal device operation, a dedicated CAN Object
is not appropriate.

• For higher level protocols based on CAN, you can use sequences of
write/read transactions to initialize communication with a device.
In these protocols, specific sequences of CAN frames often need to
be exchanged before you can access the data from a device. In such
cases, you can use the CAN Network Interface Object to set up
communication, then use CAN Objects for actual data transfer with
the device.

In general, you use CAN Network Interface Objects for situations in which
you need to transfer arbitrary CAN frames.

Using CAN Objects
The CAN Object encapsulates a specific CAN arbitration ID and its
associated data.

Every CAN Object is always associated with a specific CAN Network
Interface Object, used to identify the physical interface on which the CAN
Object is located. Your application can use multiple CAN Objects in
conjunction with their associated CAN Network Interface Object.

The CAN Object provides high level access to a specific arbitration ID.
You can configure each CAN Object for different forms of background
access. For example, you can configure a CAN Object to transmit a data
frame every 100 milliseconds, or to periodically poll for data by
transmitting a remote frame and receiving the data frame response. The
arbitration ID, direction of data transfer, data length, and when data transfer
occurs (periodic or unsolicited) are all preconfigured for the CAN Object.
When you have configured and opened the CAN Object, data transfer is
handled in the background using read and write queues. For example, if the
CAN Object periodically polls for data, the NI-CAN driver automatically
handles the periodic transmission of remote frames, and stores incoming
data in the read queue of the CAN Object for later retrieval by the ncRead
function. For CAN Objects that receive data frames, the ncRead function
provides a timestamp of when the data frame arrived, and the data bytes
of the frame. For CAN Objects that transmit data frames, the ncWrite
function provides the outgoing data bytes.

Chapter 7 Using the Frame API

© National Instruments Corporation 7-3 NI-CAN Hardware and Software Manual

Some possible uses for CAN Objects include the following:

• You can configure a CAN Object to periodically transmit a data frame
for a specific arbitration ID. The CAN Object transmits the same data
bytes repetitively until different data is provided using ncWrite.

• You can configure a CAN Object to watch for unsolicited data frames
received for its arbitration ID, then store that data in the CAN Object’s
read queue. A watchdog timeout is provided to ensure that incoming
data is received periodically. This configuration is useful when you
want to apply a timeout to data received for a specific arbitration ID
and store that data in a dedicated queue. If you do not need to apply
a timeout for a given arbitration ID, it is preferable to use the CAN
Network Interface Object to receive that data.

• You can configure a CAN Object to periodically poll for data by
transmitting a remote frame and receiving the data frame response.
This configuration is useful for communication with devices that
require a remote frame to transmit their data.

• You can configure a CAN Object to transmit a data frame whenever
it receives a remote frame for its arbitration ID. You can use this
configuration to simulate a device which responds to remote frames.

In general, you use CAN Objects for data transfer for a specific arbitration
ID, especially when that data transfer needs to occur periodically.

Programming Model
The following steps demonstrate how to use the Frame API functions in
your application. The steps are shown in Figure 7-1 in flowchart form.

Chapter 7 Using the Frame API

NI-CAN Hardware and Software Manual 7-4 ni.com

Figure 7-1. Programming Model for NI-CAN Frame API

Yes

No

Yes

No

No

Yes

Yes

No

START

END

Communicate Using Objects
• Wait for Data Available
 (ncWaitForState,
 ncCreateNotification)
• Read Data (ncRead)
• Write Data (ncwrite)
and so on

Configure Object

Open Object (ncOpenObject)

Start Communication (ncAction)

Close Object (ncCloseObject)

Are All
Objects Configured?

Are All
Objects Open?

Finished
CAN Programming?

Are All
Objects Closed?

Chapter 7 Using the Frame API

© National Instruments Corporation 7-5 NI-CAN Hardware and Software Manual

Step 1. Configure Objects
Prior to opening the objects used in your application, you must configure
the objects with their initial attribute settings. Each object is configured
within your application by calling the ncConfig function. This function
takes the name of the object to configure, along with a list of configuration
attribute settings.

Step 2. Open Objects
You must call the ncOpenObject function to open each object you use
within your application.

The ncOpenObject function returns a handle for use in all subsequent
Frame API calls for that object. When you are using the LabVIEW function
library, this handle is passed through the upper left and right terminals of
each Frame API function used after the open.

Step 3. Start Communication
You must start communication on the CAN network before you can use
your objects to transfer data.

If you configured your CAN Network Interface Object to start on open, that
object and all of its higher level CAN Objects are started automatically by
the ncOpenObject function, so nothing special is required for this step.

If you disabled the start-on-open attribute, when your application is ready
to start communication, use the CAN Network Interface Object to call the
ncAction function with the Opcode parameter set to NC_OP_START. This
call is often useful when you want to use ncWrite to place outgoing data
in write queues prior to starting communication. This call is also useful in
high bus load situations, because it is more efficient to start communication
after all objects have been opened.

If you want to reset the CAN hardware completely to clear a pending Error
Passive state, you can use the CAN Network Interface Object to call the
ncAction function with the Opcode parameter set to NC_OP_RESET.
This reset must be done prior to starting communication.

Step 4. Communicate Using Objects
After you open your objects and start communication, you are ready to
transfer data on the CAN network. The manner in which data is transferred
depends on the configuration of the objects you are using. For this example,
assume that you are communicating with a CAN device that periodically

Chapter 7 Using the Frame API

NI-CAN Hardware and Software Manual 7-6 ni.com

transmits a data frame. To receive this data, assume that a CAN Object is
configured to watch for data frames received for its arbitration ID and store
that data in its read queue.

Step 4a. Wait for Available Data
To wait for the arrival of a data frame from the device, you can
call ncWaitForState with the DesiredState parameter set to
NC_ST_READ_AVAIL. The NC_ST_READ_AVAIL state tells you that data
for the CAN Object has been received from the network and placed into the
object’s read queue.

When receiving data from the device, if your only requirement is
to obtain the most recent data, you are not required to wait for the
NC_ST_READ_AVAIL state. If this is the case, you can set the read queue
length of the CAN Object to zero during configuration, so that it only holds
the most recent data bytes. Then you can use the ncRead function as
needed to obtain the most recent data bytes received.

Step 4b. Read Data
Read the data bytes using ncRead. For CAN Objects that receive data
frames, ncRead returns a timestamp of when the data was received,
followed by the actual data bytes (the number of which you configured
in step 1).

Steps 4a and 4b should be repeated for each data value you want to read
from the CAN device.

Step 5. Close Objects
When you are finished accessing the CAN devices, close all objects using
the ncCloseObject function before you exit your application.

Chapter 7 Using the Frame API

© National Instruments Corporation 7-7 NI-CAN Hardware and Software Manual

Additional Programming Topics
The following sections outline changes to the Frame API as compared to
NI-CAN 1.6.

RTSI
The Frame API provides RTSI features that are lower level than the
synchronization features of the Channel API. The following list describes
some of the more commonly used RTSI features in the Frame API.

• You can configure the CAN Network Interface Object to log a special
RTSI frame into the read queue when a RTSI input pulses. This RTSI
frame is timestamped, so you can use it to analyze the time of the RTSI
pulse relative to the CAN frames on the network.

• You can configure the CAN Object to generate a RTSI output pulse
when its ID is received. This allows you to trigger other products based
on the reception of a specific CAN frame.

• You can configure the CAN Object to transmit a CAN frame when a
RTSI input pulses. This allows you to transmit based on a functional
unit in another product, such as a counter in an NI-DAQ E-series MIO
product.

For more information on RTSI configuration, refer to the ncConfig
functions in this manual.

Remote Frames
The Frame API has extensive features to transmit and receive remote
frames. The following list describes some of the more commonly used
remote frame features in the Frame API.

• The CAN Network Interface Object can transmit arbitrary remote
frames.

• NI-CAN hardware uses the Intel 82527 CAN controller, which cannot
receive arbitrary remote frames. The CAN Network Interface Object
cannot receive remote frames.

• You can configure a CAN Object to transmit a remote frame and
receive the corresponding data frame. The remote frame can be
transmitted periodically, based on a RTSI input, or each time you call
ncWrite.

• You can configure a CAN Object to transmit a data frame in response
to reception of the corresponding remote frame.

Chapter 7 Using the Frame API

NI-CAN Hardware and Software Manual 7-8 ni.com

Using Queues
To maintain an ordered history of data transfers, NI-CAN supports the use
of queues, also known as FIFO (first-in-first-out) buffers. The basic
behavior of such queues is common to all NI-CAN objects.

There are two basic types of NI-CAN queues: the read queue and the write
queue. NI-CAN uses the read queue to store incoming network data items
in the order they arrive. You access the read queue using ncRead to obtain
the data. NI-CAN uses the write queue to transmit network frames one at a
time using the network interface hardware. You access the write queue
using ncWrite to store network data items for transmission.

State Transitions
The NC_ST_READ_AVAIL state transitions from false to true when NI-CAN
places a new data item into an empty read queue, and remains true until you
read the last data item from the queue and the queue is empty.

The NC_ST_READ_MULT state transitions from false to true when the
number of items in a queue exceeds a threshold. The threshold is set using
the NC_ATTR_NOTIFY_MULT_LEN attribute. The NC_ST_READ_MULT state
and ncReadMult function are useful in high-traffic networks in which data
items arrive quickly.

The NC_ST_WRITE_SUCCESS state transitions from false to true when the
write queue is empty and NI-CAN has successfully transmitted the last data
item onto the network. The NC_ST_WRITE_SUCCESS state remains true
until you write another data item into the write queue. When
communication starts, the NC_ST_WRITE_SUCCESS state is true by default.

Empty Queues
For both read and write queues, the behavior for reading an empty queue is
similar. When you read an empty queue, the previous data item is returned
again. For example, if you call ncRead when NC_ST_READ_AVAIL is false,
the data from the previous call to ncRead is returned again, along with the
CanWarnOldData warning. If no data item has yet arrived for the read
queue, a default data item is returned, which consists of all zeros. You
should generally wait for NC_ST_READ_AVAIL prior to the first call to
ncRead.

Chapter 7 Using the Frame API

© National Instruments Corporation 7-9 NI-CAN Hardware and Software Manual

Full Queues
For both read and write queues, the behavior for writing a full queue
is similar. When you write a full queue, NI-CAN returns the
CanErrOverflowWrite error code. For example, if you write too many
data items to a write queue, the ncWrite function eventually returns the
overflow error.

Disabling Queues
If you do not need a complete history of all data items, you can disable the
read queue and/or write queue by setting its length to zero. Zero length
queues are typically used only with CAN objects, not the CAN Network
Interface Object. Using zero length queues generally saves memory, and
often results in better performance. When a new data item arrives for a zero
length queue, it overwrites the previous item without indicating an
overflow. The NC_ST_READ_AVAIL and NC_ST_WRITE_SUCCESS states
still behave as usual, but you can ignore them if you want only the most
recent data. For example, when NI-CAN writes a new data item to the read
buffer, the NC_ST_READ_AVAIL state becomes true until the data item
is read. If you only want the most recent data, you can ignore the
NC_ST_READ_AVAIL state, as well as the CanWarnOldData warning
returned by ncRead.

Using the CAN Network Interface Object with CAN Objects
For many applications, it is desirable to use a CAN Network Interface
Object in conjunction with higher level CAN Objects. For example, you
can use CAN objects to transmit data or remote frames periodically, and
use the CAN Network Interface Object to receive all incoming frames.

When one or more CAN Objects are open, the CAN Network Interface
Object cannot receive frames which would normally be handled by the
CAN Objects. The flowchart in Figure 7-2 shows the steps performed
by the Frame API when a CAN frame is received.

Chapter 7 Using the Frame API

NI-CAN Hardware and Software Manual 7-10 ni.com

Figure 7-2. Flowchart for CAN Frame Reception

The decisions in Figure 7-2 are generally performed by the on-board CAN
communications controller chip. Nevertheless, if you intend to use CAN
Objects as the sole means of accessing the CAN bus, it is best to disable
all frame reception in the CAN Network Interface Object by setting the
comparator attributes to NC_CAN_ARBID_NONE (hex CFFFFFFF).
By doing this, the CAN communications controller chip is best able to
filter out all incoming frames except those handled by CAN Objects.

Yes

No

No

Yes

Standard Extended

No No

Yes

Yes

Yes

Place Frame Into Read Queue of
CAN Network Interface Object

CAN Object Uses Frame

CAN Network Interface Object

Frame Ignored

Apply Standard Mask

NoNo

Frame Ignored

Arbitration ID
Handled by an Open

CAN Object?

Frame Received

Data
Frame?

Standard or
Extended Frame?

Standard
Comparator Disabled?

(NC_CAN_ARBID_NONE)

Extended
Comparator Disabled?

(NC_CAN_ARBID_NONE)

Frame Ignored

Frame Ignored

Frame Ignored

Apply Standard Mask

Masked
Arbitration ID

Equal to Standard
Comparator?

Masked
Arbitration ID

Equal to Standard
Comparator?

Yes

Chapter 7 Using the Frame API

© National Instruments Corporation 7-11 NI-CAN Hardware and Software Manual

Detecting State Changes
You can detect state changes for an object using one of the following
schemes:

• Call ncWaitForState to wait for one or more states to occur.

• Use ncCreateNotification in C/C++ to register a callback for one
or more states.

• Use ncCreateOccurrence in LabVIEW to create an occurrence for
one or more states.

• Call ncGetAttribute to get the NC_ATTR_STATE attribute.

Use the ncWaitForState function when your application must wait for a
specific state before proceeding. For example, if you call ncWrite to write
a frame, and your application cannot proceed until the frame is successfully
transmitted, you can call ncWaitForState to wait for
NC_ST_WRITE_SUCCESS.

Use the ncCreateNotification function in C/C++ when your
application must handle a specific state, but can perform other processing
while waiting for that state to occur. The ncCreateNotification
function registers a callback function, which is invoked when the desired
state occurs. For example, a callback function for NC_ST_READ_AVAIL can
call ncRead and place the resulting data in a buffer. Your application can
then perform any tasks desired, and process the CAN data only as needed.

Use the ncCreateOccurrence function in LabVIEW when your
application must handle a specific state, but can perform other processing
while waiting for that state to occur. The ncCreateOccurrence function
creates a LabVIEW occurrence, which is set when the desired state occurs.
Occurrences are the mechanism used in LabVIEW to provide
multithreaded execution.

Use the ncGetAttribute function when you need to determine the
current state of an object.

© National Instruments Corporation 8-1 NI-CAN Hardware and Software Manual

8
Frame API for LabVIEW

This chapter lists the LabVIEW VIs for the NI-CAN Frame API and describes the format,
purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically.

Unless otherwise stated, each NI-CAN VI suspends execution of the calling thread until it
completes.

Section Headings
The following are section headings found in the Frame API for LabVIEW VIs.

Purpose
Each VI description includes a brief statement of the purpose of the VI.

Format
The format section describes the format of each VI.

Input and Output
The input and output parameters for each VI are listed.

Description
The description section gives details about the purpose and effect of each VI.

CAN Network Interface Object
The CAN Network Interface Object section gives details about using the VI with the CAN
Network Interface Object.

CAN Object
The CAN Object section gives details about using the VI with the CAN Object.

Chapter 8 Frame API for LabVIEW — List of VIs

NI-CAN Hardware and Software Manual 8-2 ni.com

List of VIs
The following table is an alphabetical list of the NI-CAN VIs for the Frame API.

Table 8-1. Frame API for LabVIEW VIs

Function Purpose

ncAction.vi Perform an action on an object.

ncCloseObject.vi Close an object.

ncConfigCANNet.vi Configure a CAN Network Interface Object before
opening it.

ncConfigCANNetLS.vi Configure a CAN Network Interface Object with
logging of low-speed faults enabled.

ncConfigCANNetLS-RTSI.vi Configure a CAN Network Interface Object with RTSI
features, and with logging of low-speed faults enabled.

ncConfigCANNetRTSI.vi Configure a CAN Network Interface Object with RTSI
features.

ncConfigCANObj.vi Configure a CAN Object before using it.

ncConfigCANObjRTSI.vi Configure a CAN Object with RTSI features.

ncCreateOccur.vi Create a LabVIEW occurrence for an object.

ncGetAttr.vi Get the value of an object attribute.

ncGetHardwareInfo.vi Get NI-CAN hardware information.

ncGetTimer.vi Get the absolute timestamp attribute.

ncOpenObject.vi Open an object.

ncReadNet.vi Read single frame from a CAN Network Interface
Object.

ncReadNetMult.vi Read multiple frames from a CAN Network Interface
Object.

ncReadObj.vi Read single frame from a CAN Object.

ncReadObjMult.vi Read multiple frames from a CAN Object.

ncReset.vi Reset the CAN card.

ncSetAttr.vi Set the value of an object attribute.

Chapter 8 Frame API for LabVIEW — List of VIs

© National Instruments Corporation 8-3 NI-CAN Hardware and Software Manual

ncWait.vi Wait for one or more states to occur in an object.

ncWriteNet.vi Write the data value of an object.

ncWriteObj.vi Write a single frame to a CAN Object.

Table 8-1. Frame API for LabVIEW VIs (Continued)

Function Purpose

Chapter 8 Frame API for LabVIEW — ncAction.vi

NI-CAN Hardware and Software Manual 8-4 ni.com

ncAction.vi

Purpose
Perform an action on an object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

Opcode is the operation code indicating which action to perform. Refer to
Tables 8-2 and 8-3.

Param is an optional parameter whose meaning is defined by Opcode.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 8 Frame API for LabVIEW — ncAction.vi

© National Instruments Corporation 8-5 NI-CAN Hardware and Software Manual

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncAction is a general purpose VI you can use to perform an action on the object specified by
ObjHandle in. Its normal use is to start and stop network communication on a CAN Network
Interface Object.

NI-CAN provides VIs such as ncOpenObject and ncRead for the most frequently used
and/or complex actions. ncAction provides an easy, general purpose way to perform actions
that are used less frequently or are relatively simple.

CAN Network Interface Object
NI-CAN propagates all actions on the CAN Network Interface Object up to all open CAN
Objects.

Table 8-2 describes the actions supported by the CAN Network Interface Object.

Chapter 8 Frame API for LabVIEW — ncAction.vi

NI-CAN Hardware and Software Manual 8-6 ni.com

CAN Object
All actions performed on a CAN Object affect that CAN Object alone, and do not affect other
CAN Objects or communication as a whole. Table 8-3 describes the actions supported by the
CAN Object.

Table 8-2. Actions Supported by the CAN Network Interface Object

Opcode Param Description

Start CAN
Network
Interface

N/A (ignored) Transitions network interface from stopped
(idle) state to started (running) state. If network
interface is already started, this operation has
no effect. When a network interface is started,
it is communicating on the network. When you
execute the Start action on a stopped CAN
Network Interface Object, NI-CAN propagates it
upward to all open higher-level CAN Objects.
Thus, you can use it to start all higher-level
network communication simultaneously.

Stop CAN
Network
Interface

N/A (ignored) Transitions network interface from started
state to stopped state. If network interface is
already stopped, this operation has no effect.
When a network interface is stopped, it is not
communicating on the network. When you
execute the Stop action on a running CAN
Network Interface Object, NI-CAN propagates it
upward to all open higher-level CAN Objects.

Reset CAN
Network
Interface

N/A (ignored) Resets network interface. Stops network
interface, then resets the CAN controller to clear
the CAN error counters (clear error passive
state). Resetting includes clearing all entries
from read and write queues. The reset action is
propagated up to all open higher-level CAN
Objects.

Output on
RTSI line

N/A (ignored) Output a pulse or toggle on the RTSI line
depending upon the RTSI Behavior attribute.

Table 8-3. Actions Supported by the CAN Object

Opcode Param Description

Output on
RTSI line

N/A (ignored) Output a pulse or toggle on the RTSI line
depending upon the RTSI Behavior attribute.

Chapter 8 Frame API for LabVIEW — ncCloseObject.vi

© National Instruments Corporation 8-7 NI-CAN Hardware and Software Manual

ncCloseObject.vi

Purpose
Close an object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. Unlike other NI-CAN VIs,
this VI always closes the object, regardless of the value of status.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 8 Frame API for LabVIEW — ncCloseObject.vi

NI-CAN Hardware and Software Manual 8-8 ni.com

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncCloseObject closes an object when it no longer needs to be in use, such as when the
application is about to exit. When an object is closed, NI-CAN stops all pending operations
and clears RTSI configuration for the object, and your application can no longer use that
specific ObjHandle in.

Unlike other NI-CAN VIs, this VI always closes the object, regardless of the Status in
Error In.

CAN Network Interface Object
ObjHandle in refers to an open CAN Network Interface Object.

CAN Object
ObjHandle in refers to an open CAN Object.

Chapter 8 Frame API for LabVIEW — ncConfigCANNet.vi

© National Instruments Corporation 8-9 NI-CAN Hardware and Software Manual

ncConfigCANNet.vi

Purpose
Configure a CAN Network Interface Object before opening it.

Format

Input

ObjName is the name of the CAN Network Interface Object to configure.
This name uses the syntax “CANx”, where x is a decimal number starting
at zero that indicates the CAN network interface (CAN0, CAN1, up to
CAN63). CAN network interface names are associated with physical CAN
ports using the Measurement and Automation Explorer (MAX).

The Frame API and Channel API cannot use the same CAN network
interface simultaneously. If the CAN network interface is already
initialized in the Channel API, this function returns an error.

CAN Network Interface Config provides the core configuration attributes
of the CAN Network Interface Object. This cluster uses the typedef
ncNetAttr.ctl. You can wire in the cluster by first placing it on your front
panel from the NI-CAN Controls palette, or you can right-click the VI input
and select Create Constant or Create Control.

Start On Open indicates whether communication starts for the
CAN Network Interface Object (and all applicable CAN Objects)
immediately upon opening the object with ncOpenObject.
The default is TRUE, which starts communication when
ncOpenObject is called. If you set Start On Open to FALSE,
you can call ncSetAttribute after opening the interface, then
ncAction to start communication. The ncSetAttribute VI can be
used to set attributes that are not contained within the
ncConfigCANNet VI.

Baud Rate is the baud rate to use for communication. Basic baud
rates are supported, including 100000, 125000, 250000, 500000,
and 1000000. If you are familiar with the Bit Timing registers
used in CAN controllers, you can use a special hexadecimal baud

Chapter 8 Frame API for LabVIEW — ncConfigCANNet.vi

NI-CAN Hardware and Software Manual 8-10 ni.com

rate of 0x8000zzyy, where yy is the desired value for register 0
(BTR0), and zz is the desired value for register 1 (BTR1) of the
CAN controller.

For the Frame API, the Baud Rate has no relationship with the
baud rate property in MAX. You must always configure the Baud
Rate with the ncConfigCANNet VI.

Read Queue Length is the maximum number of unread frames
for the read queue of the CAN Network Interface Object. A
typical value is 100. For more information, refer to
ncReadNetMult.

Write Queue Length is the maximum number of frames for the
write queue of the CAN Network Interface Object awaiting
transmission. A typical value is 10. For more information, refer to
ncWriteNet.

Standard Comparator is the CAN arbitration ID for the standard
(11-bit) frame comparator. For information on how this attribute
is used to filter standard frames for the Network Interface, refer to
the following Standard Mask attribute.

If you intend to open the Network Interface, most applications can
set this attribute and the Standard Mask to 0 in order to receive
all standard frames.

If you intend to use CAN Objects as the sole means of receiving
standard frames from the network, you should disable all standard
frame reception in the Network Interface by setting this attribute
to the special value CFFFFFFF hex. With this setting, the Network
Interface is best able to filter out incoming standard frames except
those handled by CAN Objects.

Standard Mask is the bit mask used in conjunction with the
Standard Comparator attribute for filtration of incoming
standard (11-bit) CAN frames. For each bit set in the mask,
NI-CAN compares the corresponding bit in the Standard
Comparator to the arbitration ID of the received frame. If the
mask/comparator matches, the frame is stored in the Network
Interface queue, otherwise it is discarded. Bits in the mask that are
clear are treated as don’t-cares. For example, hex 00000700 means
to compare only the three upper bits of the 11-bit standard ID.

Chapter 8 Frame API for LabVIEW — ncConfigCANNet.vi

© National Instruments Corporation 8-11 NI-CAN Hardware and Software Manual

If you intend to open the Network Interface, most applications can
set this attribute and the Standard Comparator to 0 in order to
receive all standard frames.

If you set the Standard Comparator to CFFFFFFF hex, this
attribute is ignored, because all standard frame reception is
disabled for the Network Interface.

Extended Comparator is the CAN arbitration ID for the
extended (29-bit) frame comparator. For information on how this
attribute is used to filter extended frames for the Network
Interface, refer to the following Extended Mask attribute.

If you intend to open the Network Interface, most applications can
set this attribute and the Extended Mask to 0 in order to receive all
extended frames.

If you intend to use CAN Objects as the sole means of receiving
extended frames from the network, you should disable all
extended frame reception in the Network Interface by setting this
attribute to the special value CFFFFFFF hex. With this setting, the
Network Interface is best able to filter out incoming extended
frames except those handled by CAN Objects.

Extended Mask is the bit mask used in conjunction with the
Extended Comparator attribute for filtration of incoming
extended (29-bit) CAN frames. For each bit set in the mask,
NI-CAN compares the corresponding bit in the Extended
Comparator to the arbitration ID of the received frame. If the
mask/comparator matches, the frame is stored in the Network
Interface queue, otherwise it is discarded. Bits in the mask that
are clear are treated as don’t-cares. For example, hex 1F000000
means to compare only the five upper bits of the 29-bit
extended ID.

If you intend to open the Network Interface, most applications can
set this attribute and the Extended Comparator to 0 in order to
receive all extended frames.

If you set the Extended Comparator to CFFFFFFF hex, this
attribute is ignored, because all extended frame reception is
disabled for the Network Interface.

Error in describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value
of the Error in cluster in Error out.

Chapter 8 Frame API for LabVIEW — ncConfigCANNet.vi

NI-CAN Hardware and Software Manual 8-12 ni.com

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The Network Interface provides read/write access to all IDs on the network. If you intend
to use RTSI features to synchronize the Network Interface with other National Instruments
cards, refer to the ncConfigCANNetRTSI VI.

If you need to log low-speed (LS) fault indications to the Network Interface read queue, refer
to the ncConfigCANNetLS VI or ncConfigCANNetLS-RTSI VI. These VIs are not
required if you simply need to communicate on a LS CAN interface.

The first NI-CAN VI in your application will normally be ncConfigCANNet.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetLS.vi

© National Instruments Corporation 8-13 NI-CAN Hardware and Software Manual

ncConfigCANNetLS.vi

Purpose
Configure a CAN Network Interface Object with logging of low-speed faults enabled.

Format

Input

ObjName is the name of the CAN Network Interface Object to configure.
This name uses the syntax “CANx”, where x is a decimal number starting
at zero that indicates the CAN network interface (CAN0, CAN1, up to
CAN63). CAN network interface names are associated with physical CAN
ports using the Measurement and Automation Explorer (MAX).

CAN Network Interface Config - LS provides the core configuration
attributes of the CAN Network Interface Object, plus the low-speed
logging attribute. This cluster uses the typedef ncNetAttrLS.ctl. You can
wire in the cluster by first placing it on your front panel from the NI-CAN
Controls palette, or you can right-click the VI input and select Create
Constant or Create Control.

Start On Open indicates whether communication starts for the
CAN Network Interface Object (and all applicable CAN Objects)
immediately upon opening the object with ncOpenObject.
The default is TRUE, which starts communication when
ncOpenObject is called. If you set Start On Open to FALSE,
you can call ncSetAttribute after opening the interface, then
ncAction to start communication. The ncSetAttribute VI can be
used to set attributes that are not contained within the
ncConfigCANNet VI.

Baud Rate is the baud rate to use for communication. Basic baud
rates are supported, including 100000, 125000, 250000, 500000,
and 1000000. If you are familiar with the Bit Timing registers
used in CAN controllers, you can use a special hexadecimal baud
rate of 0x8000zzyy, where yy is the desired value for register 0

Chapter 8 Frame API for LabVIEW — ncConfigCANNetLS.vi

NI-CAN Hardware and Software Manual 8-14 ni.com

(BTR0), and zz is the desired value for register 1 (BTR1) of the
CAN controller.

For the Frame API, the Baud Rate has no relationship with the
baud rate property in MAX. You must always configure the Baud
Rate with the ncConfigCANNet VI.

Read Queue Length is the maximum number of unread
frames for the read queue of the CAN Network Interface Object.
A typical value is 100. For more information, refer to
ncReadNetMult.

Write Queue Length is the maximum number of frames for the
write queue of the CAN Network Interface Object awaiting
transmission. A typical value is 10. For more information, refer to
ncWriteNet.

Standard Comparator is the CAN arbitration ID for the standard
(11-bit) frame comparator. For information on how this attribute
is used to filter standard frames for the Network Interface, refer to
the following Standard Mask attribute.

If you intend to open the Network Interface, most applications can
set this attribute and the Standard Mask to 0 in order to receive
all standard frames.

If you intend to use CAN Objects as the sole means of receiving
standard frames from the network, you should disable all standard
frame reception in the Network Interface by setting this attribute
to the special value CFFFFFFF hex. With this setting, the Network
Interface is best able to filter out incoming standard frames except
those handled by CAN Objects.

Standard Mask is the bit mask used in conjunction with the
Standard Comparator attribute for filtration of incoming
standard (11-bit) CAN frames. For each bit set in the mask,
NI-CAN compares the corresponding bit in the Standard
Comparator to the arbitration ID of the received frame. If the
mask/comparator matches, the frame is stored in the Network
Interface queue, otherwise it is discarded. Bits in the mask that are
clear are treated as don’t-cares. For example, hex 00000700 means
to compare only the upper three bits of the 11-bit standard ID.

If you intend to open the Network Interface, most applications can
set this attribute and the Standard Comparator to 0 in order to
receive all standard frames.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetLS.vi

© National Instruments Corporation 8-15 NI-CAN Hardware and Software Manual

If you set the Standard Comparator to CFFFFFFF hex, this
attribute is ignored, because all standard frame reception is
disabled for the Network Interface.

Extended Comparator is the CAN arbitration ID for the
extended (29-bit) frame comparator. For information on how this
attribute is used to filter extended frames for the Network
Interface, refer to the following Extended Mask attribute.

If you intend to open the Network Interface, most applications can
set this attribute and the Extended Mask to 0 in order to receive all
extended frames.

If you intend to use CAN Objects as the sole means of receiving
extended frames from the network, you should disable all
extended frame reception in the Network Interface by setting this
attribute to the special value CFFFFFFF hex. With this setting, the
Network Interface is best able to filter out incoming extended
frames except those handled by CAN Objects.

Extended Mask is the bit mask used in conjunction with the
Extended Comparator attribute for filtration of incoming
extended (29-bit) CAN frames. For each bit set in the mask,
NI-CAN compares the corresponding bit in the Extended
Comparator to the arbitration ID of the received frame. If the
mask/comparator matches, the frame is stored in the Network
Interface queue, otherwise it is discarded. Bits in the mask that
are clear are treated as don’t-cares. For example, hex 1F000000
means to compare only the upper five bits of the 29-bit
extended ID.

If you intend to open the Network Interface, most applications can
set this attribute and the Extended Comparator to 0 in order to
receive all extended frames.

If you set the Extended Comparator to CFFFFFFF hex, this
attribute is ignored, because all extended frame reception is
disabled for the Network Interface.

Log Comm Warnings specifies whether to log communication
warnings (including LS faults) to the Network Interface read
queue.

When set to FALSE (default), the Network Interface reports CAN
communication warnings (including LS faults) in Error out of the

Chapter 8 Frame API for LabVIEW — ncConfigCANNetLS.vi

NI-CAN Hardware and Software Manual 8-16 ni.com

read VIs. For more information, refer to ncReadNetMult. Using
FALSE is equivalent to calling ncConfigCANNet.

When set to TRUE, the Network Interface reports CAN
communication warnings (including LS faults) by storing a
special frame in the read queue. The communication warnings
are not reported in Error out. For more information on
communication warnings and errors, refer to ncReadNetMult.
The special communication warning frame uses the following
format:

Arbitration ID: Error/warning ID

(refer to ncReadNetMult)

Timestamp: Time when error/warning occurred

IsRemote: 2

DataLength: 0

Data: N/A (ignore)

When calling ncReadNet or ncReadNetMult to read frames
from the Network Interface, you typically use the IsRemote field
to differentiate communications warnings from CAN frames.
Refer to ncReadNetMult for more information.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetLS.vi

© National Instruments Corporation 8-17 NI-CAN Hardware and Software Manual

Output

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI is not required if you simply need to communicate on a LS CAN interface.
Use ncConfigCANNet or ncConfigCANNetRTSI instead.

If you intend to use RTSI features to synchronize the Network Interface with other
National Instruments cards, refer to the ncConfigCANNetRTSI-LS VI.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetLS-RTSI.vi

NI-CAN Hardware and Software Manual 8-18 ni.com

ncConfigCANNetLS-RTSI.vi

Purpose
Configure a CAN Network Interface Object with RTSI features, and with logging of
low-speed faults enabled.

Format

Input

ObjName is the name of the CAN Network Interface Object to configure.
This name uses the syntax “CANx”, where x is a decimal number starting
at zero that indicates the CAN network interface (CAN0, CAN1, up to
CAN63). CAN network interface names are associated with physical CAN
ports using the Measurement and Automation Explorer (MAX).

CAN Network Interface Config - LS provides the core configuration
attributes of the CAN Network Interface Object, plus the low-speed
logging attribute. This cluster uses the typedef ncNetAttrLS.ctl. You can
wire in the cluster by first placing it on your front panel from the NI-CAN
Controls palette, or you can right-click the VI input and select Create
Constant or Create Control. For more information, refer to
ncConfigCANNetLS.vi.

CAN RTSI Config provides RTSI configuration attributes for the CAN
Network Interface Object. This cluster uses the typedef
ncCANRtsiAttr.ctl. You can wire in the cluster by first placing it on your
front panel from the NI-CAN Controls palette, or you can right-click the VI
input and select Create Constant or Create Control. For more
information, refer to ncConfigCANNetRTSI.vi.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetLS-RTSI.vi

© National Instruments Corporation 8-19 NI-CAN Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI is not required if you simply need to communicate on a LS CAN interface. (Use
ncConfigCANNetRTSI instead.)

If you are not using RTSI features to synchronize the Network Interface with other National
Instruments cards, refer to the ncConfigCANNetLS VI.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetRTSI.vi

NI-CAN Hardware and Software Manual 8-20 ni.com

ncConfigCANNetRTSI.vi

Purpose
Configure a CAN Network Interface Object with RTSI features.

Format

Input

ObjName is the name of the CAN Network Interface Object to configure.
This name uses the syntax “CANx”, where x is a decimal number starting
at zero that indicates the CAN network interface (CAN0, CAN1, up to
CAN63). CAN network interface names are associated with physical CAN
ports using the Measurement and Automation Explorer (MAX)

CAN Network Interface Config provides the core configuration attributes
of the CAN Network Interface Object. This cluster uses the typedef
ncNetAttr.ctl. You can wire in the cluster by first placing it on your front
panel from the NI-CAN Controls palette, or you can right-click the VI input
and select Create Constant or Create Control. For more information,
refer to ncConfigCANNet.vi.

CAN RTSI Config provides RTSI configuration attributes for the CAN
Network Interface Object. This cluster uses the typedef
ncCANRtsiAttr.ctl. You can wire in the cluster by first placing it on your
front panel from the NI-CAN Controls palette, or you can right-click the VI
input and select Create Constant or Create Control.

RTSI Mode specifies the behavior of the Network Interface with
respect to RTSI, including whether the RTSI signal is an input or
output.

Disable RTSI

Disables RTSI behavior for the Network Interface. All
other RTSI attributes are ignored. Using this mode is
equivalent to calling ncConfigCANNet.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetRTSI.vi

© National Instruments Corporation 8-21 NI-CAN Hardware and Software Manual

On RTSI Input - Transmit CAN Frame

The Network Interface will transmit a frame from its
write queue when the RTSI input pulses. To begin
transmission, at least one data frame must be written
using ncWriteNet. If the write queue becomes empty
due to frame transmissions, the last frame will be
transmitted on each RTSI pulse until another frame is
provided using ncWriteNet.

On RTSI Input - Timestamp RTSI event

When the RTSI input pulses, a timestamp is measured
and stored in the read queue of the Network Interface.
The special RTSI frame uses the following format:

Arbitration ID: 40000001 hex

Timestamp: Time when RTSI input pulsed

IsRemote: 3

DataLength: RTSI signal detected (RTSI Signal)

Data: N/A (ignore)

When calling ncReadNet or ncReadNetMult to read
frames from the Network Interface, you typically use the
IsRemote field to differentiate RTSI timestamps from
CAN frames. Refer to ncReadNetMult for more
information.

Note When you configure a DAQ card to pulse the RTSI signal periodically, do not exceed
1,000 Hertz (pulse every millisecond). If the RTSI input is pulsed faster than 1kHz on a
consistent basis, CAN performance will be adversely affected (for example, lost data
frames).

RTSI Output on Receiving CAN Frame

The Network Interface will output the RTSI signal
whenever a CAN frame is stored in the read queue.

RTSI Output on Transmitting CAN Frame

The Network Interface will output the RTSI signal
whenever a CAN frame is successfully transmitted from
the write queue.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetRTSI.vi

NI-CAN Hardware and Software Manual 8-22 ni.com

RTSI Output on ncAction call

The Network Interface will output the RTSI signal
whenever the ncAction VI is called with Opcode Output
on RTSI line. This RTSI mode can be used to manually
toggle/pulse a RTSI output within your application.

RTSI Signal defines the RTSI signal associated with the RTSI
Mode. Valid values are 0 to 7, corresponding to RTSI 0 to RTSI 7
on other National Instruments cards.

Note For CAN cards with high-speed (HS) ports only, four (4) RTSI signals are available
for input, and four (4) RTSI signals are available for output. Since each RTSI signal is
assigned to a Network Interface or CAN Object, this means that at most four NI-CAN
objects can use RTSI inputs (or outputs). For example, if you configure five (5) RTSI
signals for input, NI-CAN returns an error, regardless of which RTSI Signal numbers were
used for each.

Note For CAN cards with one or more low-speed (LS) ports, two (2) RTSI signals are
available for input, and three (3) RTSI signals are available for output.

Note For PXI-CAN cards, RTSI Signal 6 is unavailable.

Note Many NI-DAQ cards use RTSI Signal 7 as the 20MHz clock, so this signal number
should be avoided for other uses.

RTSI Behavior specifies whether to pulse or toggle a RTSI
output. This attribute is ignored when RTSI Mode specifies input:

Output RTSI Pulse: Pulse the RTSI output for at least
100 microseconds.

Toggle RTSI Line: If the previous state was high, the
output toggles low, then vice-versa.

RTSI Skip specifies the number of RTSI inputs to skip for RTSI
Mode On RTSI Input - Timestamp RTSI event, and On RTSI
Input - Transmit CAN Frame. It is ignored for all other RTSI
Mode values. For example, if the RTSI input pulses every 1ms,
RTSI Skip of 9 means that a timestamp will be stored in the read
queue every 10ms.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

Chapter 8 Frame API for LabVIEW — ncConfigCANNetRTSI.vi

© National Instruments Corporation 8-23 NI-CAN Hardware and Software Manual

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
RTSI is a bus that interconnects National Instruments DAQ, IMAQ, NI-Motion, and CAN
boards. This feature allows synchronization of DAQ, IMAQ, NI-Motion, and CAN boards by
allowing exchange of timing signals. Using RTSI, a device (board) can control one or more
slave devices. PCI/AT boards require a ribbon cable for the connections, but for PXI boards
the connections are available on the PXI chassis backplane. Refer to the NI-CAN User
Manual for more details on the hardware connector.

If you are not using RTSI features to synchronize the Network Interface with other
National Instruments cards, refer to the ncConfigCANNet VI.

If you need to log low-speed (LS) fault indications to the Network Interface read queue, refer
to the ncConfigCANNetLS-RTSI VI. This VI is not required if you simply need to
communicate on a LS CAN interface.

Chapter 8 Frame API for LabVIEW — ncConfigCANObj.vi

NI-CAN Hardware and Software Manual 8-24 ni.com

ncConfigCANObj.vi

Purpose
Configure a CAN Object before using it.

Format

Input

ObjName is the name of the CAN Object to configure. This name uses the
syntax “CANx::STDy” or “CANx::XTDy”. CANx is the name of the CAN
network interface that you used for the preceding ncConfigCANNet VI.
STD indicates that the CAN Object uses a standard (11-bit) arbitration ID.
XTD indicates that the CAN Object uses an extended (29-bit) arbitration
ID. The number y specifies the actual arbitration ID of the CAN Object.
The number y is decimal by default, but you can also use hexadecimal by
adding “0x” to the beginning of the number. For example, “CAN0::STD25”
indicates standard ID 25 decimal on CAN0, and
“CAN1::XTD0x0000F652” indicates extended ID F652 hexadecimal on
CAN1.

CAN Object Config provides the core configuration attributes of the CAN
Object. This cluster uses the typedef ncObjAttr.ctl. You can wire in the
cluster by first placing it on your front panel from the NI-CAN Controls
palette, or you can right-click the VI input and select Create Constant or
Create Control.

Period specifies the rate of periodic behavior in milliseconds.

If you wish to specify the Period in Hertz instead of milliseconds,
you can use the special hexadecimal format 800000xx, where xx
is the desired rate in Hertz. For example, 80000020 hex specifies
32 Hz.

The behavior depends on the Communication Type as follows:

Transmit Data Periodically,
Transmit Periodic Waveform,
Receive Periodic Using Remote

Chapter 8 Frame API for LabVIEW — ncConfigCANObj.vi

© National Instruments Corporation 8-25 NI-CAN Hardware and Software Manual

Period specifies the time between subsequent
transmissions, and must be set greater than zero.

Receive Unsolicited,
Transmit by Response Only

Period specifies a watchdog timeout. If a frame is not
received at least once every period, a timeout error is
returned. Setting Period to zero disables the watchdog
timer.

Transmit Data by Call,
Receive by Call Using Remote

Period specifies a minimum interval between
subsequent transmissions. Even if ncWriteObj is called
very frequently, frames are transmitted on the network at
a rate no more than Period. Setting Period to zero
disables the minimum interval timer.

Read Queue Length is the maximum number of unread frames
for the read queue of the CAN Object. For more information, refer
to ncReadObj.

If Communication Type is set to receive data, a typical value
is 10. If Communication Type is set to transmit data, a typical
value is 0.

Write Queue Length is the maximum number of frames for the
write queue of the CAN Object awaiting transmission. For more
information, refer to ncWriteObj.

If Communication Type is set to receive data, a typical value
is 0. If Communication Type is set to transmit data, a typical
value is 10.

Receive Changes Only applies only to Communication Type
selections in which the CAN Object receives data frames (ignored
for other types). For those configurations, Receive Changes Only
specifies whether duplicated data should be placed in the read
queue. When set to FALSE (default), all data frames for the CAN
Object ID are placed in the read queue. When set to TRUE, data
frames are placed into the read queue only if the data bytes differ
from the previously received data bytes in the read queue.

Chapter 8 Frame API for LabVIEW — ncConfigCANObj.vi

NI-CAN Hardware and Software Manual 8-26 ni.com

This attribute has no effect on the usage of a watchdog timeout for
the CAN Object. For example, if this attribute is TRUE and you
also specify a watchdog timeout, NI-CAN restarts the watchdog
timer every time it receives a data frame for the CAN Object’s ID,
regardless of whether the data differs from the previous frame.

Communication Type specifies the behavior of the CAN Object
with respect to its ID, including the direction of data transfer:

Receive Unsolicited

Receive data frames for a specific ID.

This type is useful for receiving a few IDs (1–10) into
dedicated read queues. For high performance
applications (more IDs, fast frame rates), the Network
Interface is recommended to receive all IDs.

Period specifies a watchdog timeout, and Receive
Changes Only specifies whether to place duplicate data
frames into the read queue. Transmit by Response is
ignored.

Receive Periodic Using Remote

Periodically transmit remote frame for a specific ID in
order to receive the associated data frame. Every Period,
the CAN Object transmits a remote frame, and then
places the resulting data frame response in the read
queue.

Period specifies the periodic rate, and Receive Changes
Only specifies whether to place duplicate data frames
into the read queue. Transmit by Response is ignored.

Receive by Call Using Remote

Transmit remote frame for a specific ID by calling
ncWriteObj. The CAN Object places the resulting data
frame response in the read queue.

Period specifies a minimum interval, and Receive
Changes Only specifies whether to place duplicate data
frames into the read queue. Transmit by Response is
ignored.

Chapter 8 Frame API for LabVIEW — ncConfigCANObj.vi

© National Instruments Corporation 8-27 NI-CAN Hardware and Software Manual

Transmit Data Periodically

Periodically transmit data frame for a specific ID. When
the CAN Object transmits the last entry from the write
queue, that entry is used every period until you provide a
new data frame using ncWriteObj. If you keep the write
queue filled with unique data, this behavior allows you to
ensure that each period transmits a unique data frame.

If the write queue is empty when communication starts,
the first periodic transmit does not occur until you
provide the first data frame with ncWriteObj.

This is the most commonly used CAN Object type.
If you are not using remote frames, you can use multiple
CAN Objects of this type, and the Network Interface for
all other access (event-driven transmit and all receive).

Period specifies the periodic rate, and Transmit by
Response specifies whether to transmit the previous
period's data in response to a remote frame. Receive
Changes Only is ignored.

Transmit by Response Only

Transmit data frame for a specific ID only in response to
a received remote frame. When you call ncWriteObj,
the data is placed in the write queue, and remains there
until a remote frame is received.

Period specifies a watchdog timeout. Transmit by
Response is assumed as TRUE regardless of the attribute
setting. Receive Changes Only is ignored.

Transmit Data by Call

Transmit data frame when ncWriteObj is called. When
ncWriteObj is called quickly, data frames are placed in
the write queue for back to back transmit.

Period specifies a minimum interval, and Transmit by
Response specifies whether to transmit the previous data
frame in response to a remote frame. Receive Changes
Only is ignored.

Chapter 8 Frame API for LabVIEW — ncConfigCANObj.vi

NI-CAN Hardware and Software Manual 8-28 ni.com

Transmit Periodic Waveform

Transmit a fixed sequence of data frames over and over,
one data frame every Period.

The following steps describe typical usage of this type.

1. Configure CAN Network Interface Object with
Start On Open FALSE, then open the Network
Interface.

2. Configure the CAN Object as Transmit Periodic
Waveform and a nonzero Write Queue Length,
then open the CAN Object.

3. Call ncWriteObj for the CAN Object, once for
every entry specified for the Write Queue Length.

4. Use ncAction to start the Network Interface (not the
CAN Object). The CAN Object transmits the first
frame in the write queue, then waits the specified
period, then transmits the second frame, and so on.
After the last frame is transmitted, the CAN Objects
waits the specified period, then transmits the first
frame again.

If you need to change the waveform contents at runtime,
or if you need to transmit very large waveforms (more
than 100 frames), we recommend using the Transmit
Data Periodically type. Using that type, you can write
frames to the Write Queue until full (overflow error),
then wait some time for a few frames to transmit, then
continue writing new frames.

Period specifies the periodic rate. Transmit by
Response and Receive Changes Only are ignored.

Transmit By Response applies only to Communication Type of
Transmit Data by Call and Transmit Data Periodically (ignored for
other types). For those configurations, Transmit By Response
specifies whether the CAN Object should automatically respond
with the previously transmitted data frame when it receives a
remote frame. When set to FALSE (default), the CAN Object
transmits data frames only as configured, and ignores all remote
frames for its ID. When set to TRUE, the CAN Object responds to
incoming remote frames.

Chapter 8 Frame API for LabVIEW — ncConfigCANObj.vi

© National Instruments Corporation 8-29 NI-CAN Hardware and Software Manual

Data Length specifies the number of bytes in the data frames for
this CAN Object's ID. This number is placed in the Data Length
Code (DLC) of all transmitted data frames and remote frames for
the CAN Object. This is also the number of data bytes returned
from ncReadObj when the communication type indicates
receive.

Examples of Different Communication Types
The following figures demonstrate how you can use the Communication Type attribute for
actual network data transfer. Each figure shows two separate NI-CAN applications that are
physically connected across a CAN network.

Figure 8-1 shows a CAN Object that periodically transmits data to another CAN Object.
The receiving CAN Object can queue up to five data values.

Figure 8-1. Example of Periodic Transmission

Figure 8-2 shows a CAN Object that polls data from another CAN Object. NI-CAN transmits
the CAN remote frame when you call ncWriteObj.vi.

Periodic Timer
(Obtains Data to
Transmit Every

Period)

Receive Unsolicited

Read Queue

Transmit Data Periodically

ncWriteObj.vincReadObj.vi

NI-CAN Driver NI-CAN DriverCAN
Network

Your
Application

Your
Application

Chapter 8 Frame API for LabVIEW — ncConfigCANObj.vi

NI-CAN Hardware and Software Manual 8-30 ni.com

Figure 8-2. Example of Polling Remote Data Using ncWriteObj.vi

Figure 8-3 shows a CAN Object that polls data from another CAN Object. NI-CAN transmits
the remote frame periodically and places only changed data into the read queue.

Figure 8-3. Example of Periodic Polling of Remote Data

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI

Response Uses
Most Recent
Write Data

Receive Data by
Call Using Remote

Transmit by
Response Only

NI-CAN Driver NI-CAN DriverCAN
Network

ncWriteObj.vi

ncReadObj.vi

ncWriteObj.vi

Your
Application

Your
Application

Response Uses
Most Recent
Write Data

Receive Periodically
Using Remote

Transmit by
Response Only

Check For
Different Value

Periodic Timer

NI-CAN Driver NI-CAN DriverCAN
Network

ncReadObj.vi ncWriteObj.vi

Your
Application

Your
Application

Chapter 8 Frame API for LabVIEW — ncConfigCANObj.vi

© National Instruments Corporation 8-31 NI-CAN Hardware and Software Manual

executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN Object provides read/write access to a specific ID on the network.

You normally call ncConfigCANNet before this VI in order to configure the Network
Interface attributes, then call ncConfigCANObj for each CAN Object desired.

If you intend to use RTSI features to synchronize the CAN Object with other
National Instruments cards, refer to the ncConfigCANObjRTSI VI.

When a network frame is transmitted on a CAN-based network, it always begins with
the arbitration ID. This arbitration ID is primarily used for collision resolution when more
than one frame is transmitted simultaneously, but often is also used as a simple mechanism
to identify data. The CAN arbitration ID, along with its associated data, is referred to as a
CAN Object.

The NI-CAN implementation of CAN provides high-level access to CAN Objects on an
individual basis. You can configure each CAN Object for different forms of communication
(such as periodic polling, receiving unsolicited CAN data frames, and so on). After you
configure a CAN Object and open it for communication, use the ncReadObj and
ncWriteObj VIs to access the data of the CAN Object. The NI-CAN driver performs all other
details regarding the object.

Chapter 8 Frame API for LabVIEW — ncConfigCANObjRTSI.vi

NI-CAN Hardware and Software Manual 8-32 ni.com

ncConfigCANObjRTSI.vi

Purpose
Configure a CAN Object with RTSI features.

Format

Input

ObjName is the name of the CAN Object to configure. This name uses the
syntax “CANx::STDy” or “CANx::XTDy”. CANx is the name of the CAN
network interface that you used for the preceding ncConfigCANNet VI.
STD indicates that the CAN Object uses a standard (11-bit) arbitration ID.
XTD indicates that the CAN Object uses an extended (29-bit) arbitration
ID. The number y specifies the actual arbitration ID of the CAN Object.
The number y is decimal by default, but you can also use hexadecimal by
adding “0x” to the beginning of the number. For example, “CAN0::STD25”
indicates standard ID 25 decimal on CAN0, and
“CAN1::XTD0x0000F652” indicates extended ID F652 hexadecimal
on CAN1.

CAN Object Config provides the core configuration attributes of the CAN
Object. This cluster uses the typedef ncObjAttr.ctl. You can wire in the
cluster by first placing it on your front panel from the NI-CAN Controls
palette, or you can right-click the VI input and select Create Constant or
Create Control. For more information, refer to ncConfigCANObj.vi.

CAN RTSI Config provides RTSI configuration attributes for the CAN
Object. This cluster uses the typedef ncCANRtsiAttr.ctl. You can wire in
the cluster by first placing it on your front panel from the NI-CAN Controls
palette, or you can right-click the VI input and select Create Constant or
Create Control.

RTSI Mode specifies the behavior of the CAN Object with
respect to RTSI, including whether the RTSI signal is an input or
output.

Chapter 8 Frame API for LabVIEW — ncConfigCANObjRTSI.vi

© National Instruments Corporation 8-33 NI-CAN Hardware and Software Manual

Disable RTSI

Disables RTSI behavior for the CAN Object. All other
RTSI attributes are ignored. Using this mode is
equivalent to calling ncConfigCANObj.

On RTSI Input - Transmit CAN Frame

The CAN Object will transmit a frame from its write
queue when the RTSI input pulses. To begin
transmission, at least one data frame must be written
using ncWriteObj. If the write queue becomes empty
due to frame transmissions, the last frame will be
transmitted on each RTSI pulse until another frame is
provided using ncWriteObj.

In order to use this RTSI Mode, you must configure the
CAN Object’s Communication Type to either Transmit
Data by Call, Transmit Data Periodically, or Transmit
Periodic Waveform. The Period attribute is ignored
when this RTSI mode is selected.

On RTSI Input - Timestamp RTSI event

When the RTSI input pulses, a timestamp is measured
and stored in the read queue of the CAN Object. The
special RTSI frame uses the following format:

Timestamp: Time when RTSI input pulsed

Data: User-defined 4 byte data pattern

(refer to UserRTSIFrame for details)

Note When you configure a DAQ card to pulse the RTSI signal periodically, do not exceed
1,000 Hertz (pulse every millisecond). If the RTSI input is pulsed faster than 1kHz on a
consistent basis, CAN performance will be adversely affected (for example, lost data
frames).

RTSI Output on Receiving CAN Frame

The CAN Object will output the RTSI signal whenever a
CAN frame is stored in the read queue.

In order to use this RTSI Mode, you must configure the
CAN Object’s Communication Type to Receive
Unsolicited.

Chapter 8 Frame API for LabVIEW — ncConfigCANObjRTSI.vi

NI-CAN Hardware and Software Manual 8-34 ni.com

RTSI Output on Transmitting CAN Frame

The CAN Object will output the RTSI signal whenever a
CAN frame is successfully transmitted.

In order to use this RTSI Mode, you must configure the
CAN Object’s Communication Type to either Transmit
Data by Call, Transmit Data Periodically, or Transmit
Periodic Waveform.

RTSI Output on ncAction call

The CAN Object will output the RTSI signal whenever
the ncAction VI is called with Opcode Output on RTSI
line. This RTSI mode can be used to manually
toggle/pulse a RTSI output within your application.

RTSI Signal defines the RTSI signal associated with the RTSI
Mode. Valid values are 0 to 7, corresponding to RTSI 0 to RTSI 7
on other National Instruments cards.

Note For CAN cards with high-speed (HS) ports only, four (4) RTSI signals are available
for input, and four (4) RTSI signals are available for output. Since each RTSI signal is
assigned to a Network Interface or CAN Object, this means that at most four NI-CAN
objects can use RTSI inputs (or outputs). For example, if you configure five (5) RTSI
signals for input, NI-CAN returns an error, regardless of which RTSI Signal numbers were
used for each.

Note For CAN cards with one or more low-speed (LS) ports, two (2) RTSI signals are
available for input, and three (3) RTSI signals are available for output. The unavailable
signals are used for low-speed fault detection.

Note For PXI-CAN cards, RTSI Signal 6 is unavailable.

Note Many NI-DAQ cards use RTSI Signal 7 as the 20MHz clock, so this signal number
should be avoided for other uses.

RTSI Behavior specifies whether to pulse or toggle a RTSI
output. This attribute is ignored when RTSI Mode specifies input.

Output RTSI Pulse: Pulse the RTSI output for at least
100 microseconds.

Toggle RTSI Line: If the previous state was high, the
output toggles low, then vice-versa.

Chapter 8 Frame API for LabVIEW — ncConfigCANObjRTSI.vi

© National Instruments Corporation 8-35 NI-CAN Hardware and Software Manual

RTSI Skip specifies the number of RTSI inputs to skip for RTSI
Mode On RTSI Input - Timestamp RTSI event, and On RTSI
Input - Transmit CAN Frame. It is ignored for all other RTSI
Mode values. For example, if the RTSI input pulses every 1ms,
RTSI Skip of 9 means that a timestamp will be stored in the read
queue every 10ms.

UserRTSIFrame specifies a 4-byte pattern used to differentiate RTSI
timestamps from CAN data frames. It is provided as a U32, and the high
byte is stored as byte 0 from ncReadObj. For example, AABBCCDD
hexadecimal is returned as AA in byte 0, BB in byte 1, and so on.

This attribute is used only for RTSI Mode On RTSI Input - Timestamp
RTSI event. It is ignored for all other RTSI Mode values.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 8 Frame API for LabVIEW — ncConfigCANObjRTSI.vi

NI-CAN Hardware and Software Manual 8-36 ni.com

Description
RTSI is a bus that interconnects National Instruments DAQ, IMAQ, NI-Motion, and CAN
boards. This feature allows synchronization of DAQ, IMAQ, NI-Motion, and CAN boards by
allowing exchange of timing signals. Using RTSI, a device (board) can control one or more
slave devices. PCI/AT boards require a ribbon cable for the connections, but for PXI boards
the connections are available on the PXI chassis backplane. Refer to the NI-CAN User
Manual for more details on the hardware connector.

If you are not using RTSI features to synchronize the CAN Object with other
National Instruments cards, refer to the ncConfigCANObj VI.

Chapter 8 Frame API for LabVIEW — ncCreateOccur.vi

© National Instruments Corporation 8-37 NI-CAN Hardware and Software Manual

ncCreateOccur.vi

Purpose
Create a LabVIEW occurrence for an object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

DesiredState specifies a bit mask of states for which notification is desired.
You can use a single state alone, or you can OR them together:

00000001 hex Read Available

At least one frame is available, which you can obtain
using an appropriate read VI.

The state is set whenever a frame arrives for the object.
The state is cleared when the read queue is empty.

00000002 hex Write Success

All frames provided via write VIs have been successfully
transmitted onto the network. Successful transmit means
that the frame won arbitration, and was acknowledged by
a remote device.

The state is set when the last frame in the write queue is
transmitted successfully. The state is cleared when a
write VI is called.

For CAN Objects, Write Success does not always mean
that transmission has stopped. For example, if a CAN
Object is configured for Transmit Data Periodically,
Write Success occurs when the write queue has been

Chapter 8 Frame API for LabVIEW — ncCreateOccur.vi

NI-CAN Hardware and Software Manual 8-38 ni.com

emptied, but periodic transmit of the last frame
continues.

When communication starts the Write Success state is
true by default.

00000008 hex Read Multiple

A specified number of frames are available, which you
can obtain using either ncReadNetMult or
ncReadObjMult. The number of frames is configured
using the ReadMult Size for Notification attribute of
ncSetAttr.

The state is set whenever the specified number of frames
are stored in the read queue of the object. The state is
cleared when you call the read VI, and less than the
specified number of frames exist in the read queue.

Iteration is an optional loop iteration count. If ncCreateOccur is called
inside a loop, the iteration count of the loop is wired to Iteration to ensure
that the occurrence is created only once. If Iteration is left unwired, the
occurrence is created each time ncCreateOccur is called, which decreases
overall performance.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Occurrence returns the LabVIEW occurrence, for use with LabVIEW
Wait on Occurrence VI.

Chapter 8 Frame API for LabVIEW — ncCreateOccur.vi

© National Instruments Corporation 8-39 NI-CAN Hardware and Software Manual

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncCreateOccur creates a notification occurrence for the object specified by ObjHandle.
The NI-CAN driver uses the occurrence callback to communicate state changes to your
application.

The ncCreateOccur vi is not recommended for use with LabVIEW Real-Time (RT). Due to
the internal implementation of occurrences in LabVIEW, their use can have negative effects
on real-time performance.

This VI is normally used when you want to allow other code to execute while waiting for
NI-CAN states, especially when the other code does not call NI-CAN VIs. If such background
execution is not needed, the ncWait VI offers better overall performance. The ncWait VI
cannot be used at the same time as ncCreateOccur.

Upon successful return from ncCreateOccur, the occurrence is set whenever one of the states
specified by DesiredState occurs in the object. If DesiredState is zero, occurrences are
disabled for the object specified by ObjHandle.

The Occurrence output is normally wired into the LabVIEW Wait on Occurrence VI. Wait
on Occurrence takes the Occurrence, and also a timeout and flag indicating whether to
ignore a pending state. For more information on Wait On Occurrence, refer to the LabVIEW
Online Reference.

When Wait on Occurrence completes, you should execute code to handle the DesiredState.
For example:

• If DesiredState is Read Available, you should call ncReadNet or ncReadObj to read
the available data.

• If DesiredState is Read Multiple, you should call ncReadNetMult or ncReadObjMult
to read the available data.

Chapter 8 Frame API for LabVIEW — ncCreateOccur.vi

NI-CAN Hardware and Software Manual 8-40 ni.com

After it has been created, the Occurrence will be set each time a DesiredState goes from
false to true. When you no longer want to wait on the Occurrence (for example, when
terminating your application), call ncCreateOccur with DesiredState zero.

Chapter 8 Frame API for LabVIEW — ncGetAttr.vi

© National Instruments Corporation 8-41 NI-CAN Hardware and Software Manual

ncGetAttr.vi

Purpose
Get the value of an object attribute.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

AttrId specifies the attribute to get.

Protocol

For NI-CAN, this always returns 1.

For NI-DNET, this always returns 2.

This attribute is available only from the Network
Interface, not CAN Objects.

Protocol Version

For NI-CAN, this returns 02000200 hex, which
corresponds to version 2.0B of the Bosch CAN
specifications. For more information on the encoding of
the version, refer to Software Version.

This attribute is available only from the Network
Interface, not CAN Objects.

Software Version

Version of the NI-CAN software, with major, minor,
update, and beta build numbers encoded in the U32
from high to low bytes. For example, 2.0.1 would be
02000100 hex, and 2.1beta5 would be 02010005 hex.

Chapter 8 Frame API for LabVIEW — ncGetAttr.vi

NI-CAN Hardware and Software Manual 8-42 ni.com

This attribute is available only from the Network
Interface, not CAN Objects.

This attribute is provided for backward compatibility.
ncGetHardwareInfo VI provides more complete
version information.

Object State

Returns the object’s current state bit mask. Polling with
ncGetAttr provides an alternative method of state
detection than ncWait or ncCreateOccur. For more
information on the states returned from this attribute,
refer to the DesiredState input of ncWait.

Read Entries Pending

Returns the number of frames available in the read
queue. Polling the available frames with this attribute can
be used as an alternative to the ncWait and
ncCreateOccur VIs.

Write Entries Pending

Returns the number of frames pending transmission in
the write queue. If your intent is to verify that all pending
frames have been transmitted successfully, waiting for
the Write Success state is preferable to this attribute.

ReadMult Size for Notification

Returns the number of frames used as a threshold for the
Read Multiple state. For more information, refer to this
attribute in ncSetAttr.

Serial Number

Returns the serial number of the card on which the
Network Interface or CAN Object is located.

Form Factor

Returns the form factor of the card on which the Network
Interface or CAN Object is located.

The returned Form Factor is an enumeration.

0 PCI

1 PXI

Chapter 8 Frame API for LabVIEW — ncGetAttr.vi

© National Instruments Corporation 8-43 NI-CAN Hardware and Software Manual

2 PCMCIA

3 AT

Transceiver

Returns the CAN transceiver of the port on which the
Network Interface or CAN Object is located.

The returned Transceiver is an enumeration.

0 HS

1 LS

This attribute is not supported on the PCMCIA form
factor.

Interface Number

Returns the interface number of the port on which the
Network Interface or CAN Object is located.

This is the same number that you used in the ObjName
string of the previous Config and Open VIs.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

AttrValue returns the attribute value specified by AttrId.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

Chapter 8 Frame API for LabVIEW — ncGetAttr.vi

NI-CAN Hardware and Software Manual 8-44 ni.com

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncGetAttr gets the value of the attribute specified by AttrId from the object specified by
ObjHandle. Within NI-CAN objects, you use attributes to access configuration settings,
status, and other information about the object, but not data.

Chapter 8 Frame API for LabVIEW — ncGetHardwareInfo.vi

© National Instruments Corporation 8-45 NI-CAN Hardware and Software Manual

ncGetHardwareInfo.vi

Purpose
Get NI-CAN hardware information.

Format

Input

card number specifies the CAN card number from 1 to Number of Cards,
where Number of Cards is the number of CAN cards in your system. You
can determine the number of cards in your system by using this VI with
card number = 1, port number = 1, and attribute ID = Number of
Cards.

port number specifies the CAN port number from 1 to Number of Ports,
where Number of Ports is the number of CAN ports on this CAN card.
You can determine the number of ports on this CAN card by using this VI
with port number = 1, and attribute ID = Number of Ports.

attribute ID specifies the attribute to get.

Version Major

Returns the major version of the NI-CAN software in the number
output. Use card number 1 and port number 1 as inputs.

The major version is the ‘X’ in X.Y.Z.

Version Minor

Returns the minor version of the NI-CAN software in the number
output. Use card number 1 and port number 1 as inputs.

The major version is the ‘Y’ in X.Y.Z.

Chapter 8 Frame API for LabVIEW — ncGetHardwareInfo.vi

NI-CAN Hardware and Software Manual 8-46 ni.com

Version Update

Returns the update version of the NI-CAN software in the
number output. Use card number 1 and port number 1 as
inputs.

The major version is the ‘Z’ in X.Y.Z.

Version Phase

Returns the phase of the NI-CAN software in the number output.
Use card number 1 and port number 1 as inputs.

Phase 1 specifies Alpha, phase 2 specifies Beta, and phase 3
specifies Final release. Unless you are participating in an NI-CAN
beta program, you will always see 3.

Version Build

Returns the build of the NI-CAN software in the number output.
Use card number 1 and port number 1 as inputs.

With each software development phase, subsequent NI-CAN
builds are numbered sequentially. A given Final release version
always uses the same build number, so unless you are participating
in an NI-CAN beta program, this build number is not relevant.

Version Comment

Returns any special comment on the NI-CAN software in the
string output. Use card number 1 and port number 1 as inputs.

This string is normally empty for a Final release. In rare
circumstances, an NI-CAN prototype or patch may be released
to a specific customer. For these special releases, the version
comment describes the special features of the release.

Number of Cards

Returns the number of NI-CAN cards in your system in the
number output. Use card number 1 and port number 1 as
inputs.

If you are displaying all hardware information, you get this
attribute first, then iterate through all CAN cards with a For loop.
Inside the card’s For loop, you get all card-wide attributes
including Number Of Ports, then use another For loop to get
port-wide attributes.

Chapter 8 Frame API for LabVIEW — ncGetHardwareInfo.vi

© National Instruments Corporation 8-47 NI-CAN Hardware and Software Manual

Serial Number

Card-wide attribute that returns the serial number of the card in the
number output. Use the desired card number, and port number
1 as inputs.

Form Factor

Card-wide attribute that returns the form factor of the card in the
number output. Use the desired card number, and port number
1 as inputs.

The returned Form Factor is an enumeration.

0 PCI

1 PXI

2 PCMCIA

3 AT

Number of Ports

Card-wide attribute that returns the number of ports on the card in
the number output. Use the desired card number, and port
number 1 as inputs.

If you are displaying all hardware information, you get this
attribute within the For loop for all cards, then iterate through all
CAN ports to get port-wide attributes.

Transceiver

Port-wide attribute that returns the CAN transceiver of the port in
the number output. Use the desired card number and port
number as inputs.

The returned Transceiver is an enumeration.

0 HS

1 LS

This attribute is not supported on the PCMCIA form factor.

Chapter 8 Frame API for LabVIEW — ncGetHardwareInfo.vi

NI-CAN Hardware and Software Manual 8-48 ni.com

Interface Number

Port-wide attribute that returns the interface number of the port in
the number output. Use the desired card number and port
number as inputs.

The interface number is assigned to a physical port using the
Measurement and Automation Explorer (MAX). The interface
number is used as a string in the Frame API (i.e., “CAN0”).
The interface number is used for the interface input in the
Channel API.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

If the attribute is a number, the value is returned in this output terminal.

If the attribute is a string, the value is returned in this output terminal.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 8 Frame API for LabVIEW — ncGetHardwareInfo.vi

© National Instruments Corporation 8-49 NI-CAN Hardware and Software Manual

Description
This VI provides information about available CAN cards, but does not require you to
open/start sessions. First get Number of Cards, then loop for each card. For each card, you
can get card-wide attributes (such as Form Factor), and you can also get the Number of
Ports. For each port, you can get port-wide attributes such as the Transceiver.

Chapter 8 Frame API for LabVIEW — ncGetTimer.vi

NI-CAN Hardware and Software Manual 8-50 ni.com

ncGetTimer.vi

Purpose

Get the absolute timestamp attribute.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Timestamp returns the absolute timestamp value. The value matches the
absolute timestamp format used within LabVIEW itself. LabVIEW time is
a DBL representing the number of seconds elapsed since 12:00 a.m.,
Friday, January 1, 1904, Coordinated Universal Time (UTC). You can wire
this Timestamp to LabVIEW time functions such as Seconds To

Chapter 8 Frame API for LabVIEW — ncGetTimer.vi

© National Instruments Corporation 8-51 NI-CAN Hardware and Software Manual

Date/Time. You can also display the time in a numeric indicator of type
DBL by using Format & Precision to select Time & Date format.

Note If you use Time & Date format, LabVIEW limits the Seconds Precision to 3, which
shows only milliseconds. The NI-CAN timestamp provides microsecond precision. If you
need to view microsecond precision, convert to milliseconds, then subtract off the
non-fractional part (seconds and milliseconds), then convert to microseconds.

Timestamp = Timestamp * 1000
Microseconds = (TimeStamp - |Timestamp|) * 1000

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI can be used only with the Network Interface, and not with CAN Objects.

Chapter 8 Frame API for LabVIEW — ncOpenObject.vi

NI-CAN Hardware and Software Manual 8-52 ni.com

ncOpenObject.vi

Purpose
Open an object.

Format

Input

ObjName is the name of the object to open. You must have already wired
this name into a previous config VI.

CAN Network Interface Object

This name uses the syntax “CANx”, where x is a decimal number starting
at zero that indicates the CAN network interface (CAN0, CAN1, up to
CAN63). CAN network interface names are associated with physical CAN
ports using the Measurement and Automation Explorer (MAX).

CAN Object

This name uses the syntax “CANx::STDy” or “CANx::XTDy”. CANx is
the name of the CAN network interface that you used for the preceding
ncConfigCANNet VI. STD indicates that the CAN Object uses a standard
(11-bit) arbitration ID. XTD indicates that the CAN Object uses an
extended (29-bit) arbitration ID. The number y specifies the actual
arbitration ID of the CAN Object. The number y is decimal by default, but
you can also use hexadecimal by adding “0x” to the beginning of the
number. For example, “CAN0::STD25” indicates standard ID 25 decimal
on CAN0, and “CAN1::XTD0x0000F652” indicates extended ID F652
hexadecimal on CAN1.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

Chapter 8 Frame API for LabVIEW — ncOpenObject.vi

© National Instruments Corporation 8-53 NI-CAN Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for all subsequent NI-CAN VIs for this
object, including the final call to ncCloseObject.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncOpenObject.vi takes the name of an object to open and returns a handle to that object that
you use with subsequent NI-CAN function calls.

The Frame API and Channel API cannot use the same CAN network interface
simultaneously. If the CAN network interface is already initialized in the Channel API, this
function returns an error.

Although NI-CAN can generally be used by multiple applications simultaneously, it does not
allow more than one application to open the same object. For example, if one application
opens CAN0, and another application attempts to open CAN0, the second ncOpenObject.vi
returns the error CanErrAlreadyOpen. It is legal for one application to open CAN0::STD14
and another application to open CAN0::STD21, because the two objects are considered
distinct.

If ncOpenObject.vi is successful, a handle to the newly opened object is returned. You use
this object handle for all subsequent function calls for the object.

Chapter 8 Frame API for LabVIEW — ncReadNet.vi

NI-CAN Hardware and Software Manual 8-54 ni.com

ncReadNet.vi

Purpose
Read single frame from a CAN Network Interface Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

ArbitrationId returns the arbitration ID of the received frame. A standard
ID (11-bit) is specified by default. An extended ID (29-bit) is specified with
the bit mask 20000000 hex ORed with the ID.

Chapter 8 Frame API for LabVIEW — ncReadNet.vi

© National Instruments Corporation 8-55 NI-CAN Hardware and Software Manual

The Network Interface receives frames based on the comparators and
masks configured in ncConfigCANNet.

IsRemote indicates the type of frame:

0 Data frame

CAN data frame from network.

ArbitrationId is the ID of the received data frame. DataLength
indicates the number of data bytes received into the Data array.

2 Communication warning or error

Indicates a communications problem reported by the
CAN controller or the low-speed CAN transceiver. This frame
type occurs only when you set the Log Comm Warnings attribute
to TRUE (refer to ncConfigCANNetLS for details).

ArbitrationId indicates the type of communication problem:

8000000B hex: Comm. error: General

4000000B hex: Comm. warning: General

8001000B hex: Comm. error: Stuff

4001000B hex: Comm. warning: Stuff

8002000B hex: Comm. error: Format

4002000B hex: Comm. warning: Format

8003000B hex: Comm. error: No Ack

4003000B hex: Comm. warning: No Ack

8004000B hex: Comm. error: Tx 1 Rx 0

4004000B hex: Comm. warning: Tx 1 Rx 0

8005000B hex: Comm. error: Tx 0 Rx 1

4005000B hex: Comm. warning: Tx 0 Rx 1

8006000B hex: Comm. error: Bad CRC

4006000B hex: Comm. warning: Bad CRC

0000000B hex: Comm. errors/warnings cleared

4000000C hex: LS fault warning

0000000C hex: LS fault cleared

DataLength and Data are not applicable, and should be ignored.

For more information on communication problems, refer to
Description.

Chapter 8 Frame API for LabVIEW — ncReadNet.vi

NI-CAN Hardware and Software Manual 8-56 ni.com

3 RTSI frame

Indicates when a RTSI input pulse occurred relative to incoming
CAN frames. This frame type occurs only when you set the RTSI
Mode attribute to On RTSI Input – Timestamp RTSI event (refer
to ncConfigCANNetRTSI for details).

ArbitrationId is the special value 40000001 hex. DataLength
returns the RTSI signal detected. The Data array is not applicable,
and should be ignored.

DataLength returns the number of data bytes.

Data array returns the data bytes (8 maximum).

Timestamp returns the absolute timestamp when the frame was placed into
the read queue. The value matches the absolute timestamp format used
within LabVIEW itself. LabVIEW time is a DBL representing the number
of seconds elapsed since 12:00 a.m., Friday, January 1, 1904, Coordinated
Universal Time (UTC). You can wire this Timestamp to LabVIEW time
functions such as Seconds To Date/Time. You can also display the time in
a numeric indicator of type DBL by using Format & Precision to select
Time & Date format.

Note If you use Time & Date format, LabVIEW limits the Seconds Precision to 3, which
shows only milliseconds. The NI-CAN timestamp provides microsecond precision. If you
need to view microsecond precision, convert to milliseconds, then subtract off the
non-fractional part (seconds and milliseconds), then convert to microseconds.

Timestamp = Timestamp * 1000
Microseconds = (TimeStamp - |Timestamp|) * 1000

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 8 Frame API for LabVIEW — ncReadNet.vi

© National Instruments Corporation 8-57 NI-CAN Hardware and Software Manual

Description
The ncReadNet VI is useful when you need to process one frame at a time, because it returns
separate outputs for ArbitrationId, Timestamp, and so on. In order to read multiple frames
at a time, such as for high-bandwidth networks, use the ncReadNetMult VI.

Since NI-CAN handles the read queue in the background, this VI does not wait for new
frames to arrive. To ensure that a new frame is available before calling ncReadNet, first wait
for the Read Available state using ncWait.

When you call ncReadNet for an empty read queue (Read Available state false), the frame
from the previous call to ncReadNet is returned again, along with the CanWarnOldData
warning (status=F, code=3FF62009 hex).

When a frame arrives for a full read queue, NI-CAN discards the new frame, and the next call
to ncReadNet returns the error CanErrOverflowRead (status=T, code= BFF62028
hex). If you detect this overflow, switch to using ncReadNetMult to read in a relatively tight
loop (few milliseconds each read).

Although the Network Interface allows Read Queue Length of zero, this is not
recommended, because every new frame will always overwrite the previous frame.

You can use the Network Interface and CAN Objects simultaneously. When a CAN frame
arrives from the network, NI-CAN first checks the ArbitrationId for an open CAN Object.
If no CAN Object applies, NI-CAN checks the comparators and masks of the Network
Interface. If the frame passes that filter, NI-CAN places the frame into the read queue of the
Network Interface.

Error Active, Error Passive, and Bus Off States
When the CAN communication controller transfers into the error passive state, NI-CAN
returns the warning CanCommWarning (Status=F, code=3ff6200B hex) from
read VIs.

When the transmit error counter of the CAN communication controller increments above 255,
the network interface transfers into the bus off state as dictated by the CAN protocol. The
network interface stops communication so that you can correct the defect in the network, such
as a malfunctioning cable or device. When bus off occurs, NI-CAN returns the error
CanCommError (status=T, code=BFF6200B hex) from read VIs.

If no CAN devices are connected to the network interface port, and you attempt to transmit
a frame, the CanWarnComm warning is returned. This warning occurs because the missing
acknowledgment bit increments the transmit error counter until the network interface reaches
the error passive state, but bus off state is never reached.

For more information about low-speed communication error handling, refer to the Log
Comm Warnings attribute in ncConfigCANNetLS.

Chapter 8 Frame API for LabVIEW — ncReadNetMult.vi

NI-CAN Hardware and Software Manual 8-58 ni.com

ncReadNetMult.vi

Purpose
Read multiple frames from a CAN Network Interface Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

RequestedDataBufSize specifies the maximum number of frames desired.
For most applications, this will be the same as the configured Read Queue
Length in order to empty the read queue with each call to
ncReadNetMult.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

ActualDataSize (Frames) specifies the number of frames returned in
Data. This number is less than or equal to RequestedDataBufSize.

Chapter 8 Frame API for LabVIEW — ncReadNetMult.vi

© National Instruments Corporation 8-59 NI-CAN Hardware and Software Manual

Data returns an array of clusters. Each cluster in the array uses the typedef
CanFrameTimed.ctl, with the following elements.

ArbitrationId returns the arbitration ID of the received frame.
A standard ID (11-bit) is specified by default. An extended ID
(29-bit) is specified with the bit mask 20000000 hex ORed with
the ID.

The Network Interface receives frames based on the comparators
and masks configured in ncConfigCANNet.

IsRemote indicates the type of frame.

0 Data frame

CAN data frame from network.

ArbitrationId is the ID of the received data frame.
DataLength indicates the number of data bytes received
into the Data array.

2 Communication warning or error

Indicates a communications problem reported by the
CAN controller or the low-speed CAN transceiver. This
frame type occurs only when you set the Log Comm
Warnings attribute to TRUE (refer to
ncConfigCANNetLS for details).

ArbitrationId indicates the type of communication
problem:

8000000B hex: Comm. error: General

4000000B hex: Comm. warning: General

8001000B hex: Comm. error: Stuff

4001000B hex: Comm. warning: Stuff

8002000B hex: Comm. error: Format

4002000B hex: Comm. warning: Format

8003000B hex: Comm. error: No Ack

4003000B hex: Comm. warning: No Ack

8004000B hex: Comm. error: Tx 1 Rx 0

4004000B hex: Comm. warning: Tx 1 Rx 0

8005000B hex: Comm. error: Tx 0 Rx 1

4005000B hex: Comm. warning: Tx 0 Rx 1

8006000B hex: Comm. error: Bad CRC

Chapter 8 Frame API for LabVIEW — ncReadNetMult.vi

NI-CAN Hardware and Software Manual 8-60 ni.com

4006000B hex: Comm. warning: Bad CRC

0000000B hex: Comm. errors/warnings cleared

4000000C hex: LS fault warning

0000000C hex: LS fault cleared

DataLength and Data are not applicable, and should be
ignored.

For more information on communication problems, refer
to Description.

3 RTSI frame

Indicates when a RTSI input pulse occurred relative
to incoming CAN frames. This frame type occurs only
when you set the RTSI Mode attribute to On RTSI Input
– Timestamp RTSI event (refer to
ncConfigCANNetRTSI for details).

ArbitrationId is the special value 40000001 hex.
DataLength returns the RTSI signal detected. The Data
array is not applicable, and should be ignored.

DataLength returns the number of data bytes.

Data array returns the data bytes (8 maximum).

Timestamp returns the absolute timestamp when the frame was
placed into the read queue. The value matches the absolute
timestamp format used within LabVIEW itself. LabVIEW time is
a DBL representing the number of seconds elapsed since
12:00 a.m., Friday, January 1, 1904, Coordinated Universal Time
(UTC). You can wire this Timestamp to LabVIEW time functions
such as Seconds To Date/Time. You can also display the time in
a numeric indicator of type DBL by using Format & Precision to
select Time & Date format.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 8 Frame API for LabVIEW — ncReadNetMult.vi

© National Instruments Corporation 8-61 NI-CAN Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Since NI-CAN handles the read queue in the background, this VI does not wait for new
frames to arrive. To ensure that new frames are available before calling ncReadNetMult, first
wait for the Read Available state or Read Multiple state using ncWait.

When you call ncReadNetMult for an empty read queue (Read Available state false), Error
out returns success (status=F, code=0), and ActualDataSize (Frames) returns 0.

When a frame arrives for a full read queue, NI-CAN discards the new frame, and the next call
to ncReadNet returns the error CanErrOverflowRead (status=T, code= BFF62028
hex). If you detect this overflow, try to read in a relatively tight loop (few milliseconds each
read).

Although the Network Interface allows Read Queue Length of zero, this is not
recommended, because every new frame will always overwrite the previous frame.

You can use the Network Interface and CAN Objects simultaneously. When a CAN frame
arrives from the network, NI-CAN first checks the ArbitrationId for an open CAN Object.
If no CAN Object applies, NI-CAN checks the comparators and masks of the Network
Interface. If the frame passes that filter, NI-CAN places the frame into the read queue of the
Network Interface

Error Active, Error Passive, and Bus Off States
When the CAN communication controller transfers into the error passive state, NI-CAN
returns the warning CanCommWarning (Status=F, code=3ff6200B hex) from
read VIs.

When the transmit error counter of the CAN communication controller increments above 255,
the network interface transfers into the bus off state as dictated by the CAN protocol. The
network interface stops communication so that you can correct the defect in the network, such
as a malfunctioning cable or device. When bus off occurs, NI-CAN returns the error
CanCommError (status=T, code=BFF6200B hex) from read VIs.

If no CAN devices are connected to the network interface port, and you attempt to transmit
a frame, the warning CanWarnComm is returned. This warning occurs because the missing
acknowledgment bit increments the transmit error counter until the network interface reaches
the error passive state, but bus off state is never reached.

For more information about low-speed communication error handling, refer to the Log
Comm Warnings attribute in ncConfigCANNetLS.

Chapter 8 Frame API for LabVIEW — ncReadObj.vi

NI-CAN Hardware and Software Manual 8-62 ni.com

ncReadObj.vi

Purpose
Read single frame from a CAN Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Data array returns 8 data bytes. The actual number of valid data bytes
depends on the CAN Object configuration specified in ncConfigCANObj.

If the CAN Object Communication Type specifies Transmit, data frames
are transmitted, not received, so the ncReadObj VI has no effect.

Chapter 8 Frame API for LabVIEW — ncReadObj.vi

© National Instruments Corporation 8-63 NI-CAN Hardware and Software Manual

If the CAN Object Communication Type specifies Receive, Data always
contains Data Length valid bytes, where Data Length was configured
using ncConfigCANObj.

Timestamp returns the absolute timestamp when the frame was placed into
the read queue. The value matches the absolute timestamp format used
within LabVIEW itself. LabVIEW time is a DBL representing the number
of seconds elapsed since 12:00 a.m., Friday, January 1, 1904, Coordinated
Universal Time (UTC). You can wire this Timestamp to LabVIEW time
functions such as Seconds To Date/Time. You can also display the time in
a numeric indicator of type DBL by using Format & Precision to select
Time & Date format.

Note If you use Time & Date format, LabVIEW limits the Seconds Precision to 3, which
shows only milliseconds. The NI-CAN timestamp provides microsecond precision. If you
need to view microsecond precision, convert to milliseconds, then subtract off the
non-fractional part (seconds and milliseconds), then convert to microseconds.

Timestamp = Timestamp * 1000
Microseconds = (TimeStamp - |Timestamp|) * 1000

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The ncReadObj VI is useful when you need to process one frame at a time. In order to read
multiple frames at a time, such as for high-bandwidth networks, use the ncReadObjMult VI.

Since NI-CAN handles the read queue in the background, this VI does not wait for a new
frame to arrive. To ensure that a new frame is available before calling ncReadObj, first wait
for the Read Available state using ncWait.

Chapter 8 Frame API for LabVIEW — ncReadObj.vi

NI-CAN Hardware and Software Manual 8-64 ni.com

When you call ncReadObj for an empty read queue (Read Available state false), the frame
from the previous call to ncReadObj is returned again, along with the warning
CanWarnOldData (status=F, code=3FF62009 hex).

When a frame arrives for a full read queue, NI-CAN discards the new frame, and the next call
to ncReadObj returns the error CanErrOverflowRead (status=T, code= BFF62028
hex). If you detect this overflow, switch to using ncReadObjMult to read in a relatively
tight loop (few milliseconds each read).

If you only need to obtain the most recent frame received for the CAN Object, you can set
Read Queue Length to zero. When the read queue uses a zero length, only the most recent
frame is stored, and overflow errors do not occur.

You can use the Network Interface and CAN Objects simultaneously. When a CAN frame
arrives from the network, NI-CAN first checks the ArbitrationId for an open CAN Object.
If no CAN Object applies, NI-CAN checks the comparators and masks of the Network
Interface. If the frame passes that filter, NI-CAN places the frame into the read queue of the
Network Interface.

Chapter 8 Frame API for LabVIEW — ncReadObjMult.vi

© National Instruments Corporation 8-65 NI-CAN Hardware and Software Manual

ncReadObjMult.vi

Purpose
Read multiple frames from a CAN Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

RequestedDataBufSize specifies the maximum number of frames desired.
For most applications, this will be the same as the configured Read Queue
Length in order to empty the read queue with each call to
ncReadObjMult.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

ActualDataSize (Frames) specifies the number of frames returned in
Data. This number is less than or equal to RequestedDataBufSize.

Chapter 8 Frame API for LabVIEW — ncReadObjMult.vi

NI-CAN Hardware and Software Manual 8-66 ni.com

Data returns an array of clusters. Each cluster in the array uses the typedef
CanDataTimed.ctl with the following elements:

Data array returns 8 data bytes. The actual number of valid data
bytes depends on the CAN Object configuration specified in
ncConfigCANObj.

If the CAN Object Communication Type specifies Transmit, data
frames are transmitted, not received, so Data always contains zero
valid bytes. For this Communication Type, the ncReadObj VI has
no effect.

If the CAN Object Communication Type specifies Receive, Data
always contains Data Length valid bytes, where Data Length was
configured using ncConfigCANObj.

Timestamp returns the absolute timestamp when the frame was
placed into the read queue. The value matches the absolute
timestamp format used within LabVIEW itself. LabVIEW time
is a DBL representing the number of seconds elapsed since
12:00 a.m., Friday, January 1, 1904, Coordinated Universal Time
(UTC). You can wire this Timestamp to LabVIEW time functions
such as Seconds To Date/Time. You can also display the time in
a numeric indicator of type DBL by using Format & Precision to
select Time & Date format.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 8 Frame API for LabVIEW — ncReadObjMult.vi

© National Instruments Corporation 8-67 NI-CAN Hardware and Software Manual

Description
Since NI-CAN handles the read queue in the background, this VI does not wait for new
frames to arrive. To ensure that new frames are available before calling ncReadObjMult, first
wait for the Read Available state or Read Multiple state using ncWait.

When you call ncReadObjMult for an empty read queue (Read Available state false), Error
out returns success (status=F, code=0), and ActualDataSize (Frames) returns 0.

When a frame arrives for a full read queue, NI-CAN discards the new frame, and the next
call to ncReadObjMult returns the error CanErrOverflowRead (status=T,
code=BFF62028 hex). If you detect this overflow, try to read in a relatively tight loop
(few milliseconds each read).

If you only need to obtain the most recent frame received for the CAN Object, you can set
Read Queue Length to zero. When the read queue uses a zero length, only the most recent
frame is stored, and overflow errors do not occur.

You can use the Network Interface and CAN Objects simultaneously. When a CAN frame
arrives from the network, NI-CAN first checks the ArbitrationId for an open CAN Object.
If no CAN Object applies, NI-CAN checks the comparators and masks of the Network
Interface. If the frame passes that filter, NI-CAN places the frame into the read queue of the
Network Interface.

Chapter 8 Frame API for LabVIEW — ncReset.vi

NI-CAN Hardware and Software Manual 8-68 ni.com

ncReset.vi

Purpose
Reset the CAN card.

Format

Input

ObjName is the name of the CAN Network Interface Object to reset. This
name uses the same “CANx” syntax as ncConfigCANNet, but the reset
applies to the entire CAN card.

For example, if a 2-port card contains “CAN0” and “CAN1”, calling
ncReset.vi with ObjName “CAN1” resets all hardware/software
associated with both “CAN0” and “CAN1”.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 8 Frame API for LabVIEW — ncReset.vi

© National Instruments Corporation 8-69 NI-CAN Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI completely resets the CAN card and ensures that all handles for that card are closed.

The ncReset VI resets handles for the NI-CAN Frame API only. Do not use this function to
debug applications that use the NI-CAN Channel API.

If an NI-CAN application is terminated prior to closing all handles, the CanErrNotStopped
or CanErrAlreadyOpen error might occur when the application is restarted. This often
occurs in LabVIEW when the toolbar Stop button is used, or when a wiring problem with
ObjHandle exists. By making this the first NI-CAN VI called in your application (preceding
all ncConfig.vi), you can avoid problems related to improper termination.

You can only use ncReset.vi if you plan to run a single NI-CAN application. If you run more
than one NI-CAN application, each with ncReset, the second ncReset call will close all
handles for the first application. You should only use ncReset.vi as a temporary measure.
After you update your application so that it successfully closes NI-CAN handles on
termination, it should no longer be used.

Chapter 8 Frame API for LabVIEW — ncSetAttr.vi

NI-CAN Hardware and Software Manual 8-70 ni.com

ncSetAttr.vi

Purpose
Set the value of an object attribute.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

AttrId specifies the attribute to get.

ReadMult Size for Notification

Sets the number of frames used as a threshold for the
Read Multiple state. For more information on the Read
Multiple state, refer to ncWait.

The default value is one half of Read Queue Length.

User RTSI Frame

Sets the user RTSI frame. This attribute is normally
configured using the UserRTSIFrame input of
ncConfigCANObjRTSI. This attribute allows that value
to be changed while running. For more information, refer
to ncConfigCANObjRTSI.

This attribute is available only for CAN Objects, not the
Network Interface.

AttrValue provides the attribute value for AttrId.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

Chapter 8 Frame API for LabVIEW — ncSetAttr.vi

© National Instruments Corporation 8-71 NI-CAN Hardware and Software Manual

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncSetAttr.vi sets the value of the attribute specified by AttrId in the object specified by
ObjHandle in.

Chapter 8 Frame API for LabVIEW — ncWait.vi

NI-CAN Hardware and Software Manual 8-72 ni.com

ncWait.vi

Purpose
Wait for one or more states to occur in an object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

DesiredState specifies a bit mask of states for which notification is desired.
You can use a single state alone, or you can OR them together:

00000001 hex Read Available

At least one frame is available, which you can obtain
using an appropriate read VI.

The state is set whenever a frame arrives for the object.
The state is cleared when the read queue is empty.

00000002 hex Write Success

All frames provided via write VIs have been successfully
transmitted onto the network. Successful transmit means
that the frame won arbitration, and was acknowledged by
a remote device.

The state is set when the last frame in the write queue is
transmitted successfully. The state is cleared when a
write VI is called.

For CAN Objects, Write Success does not always mean
that transmission has stopped. For example, if a CAN
Object is configured for Transmit Data Periodically,
Write Success occurs when the write queue has been
emptied, but periodic transmit of the last frame

Chapter 8 Frame API for LabVIEW — ncWait.vi

© National Instruments Corporation 8-73 NI-CAN Hardware and Software Manual

continues. When communication starts, the Write
Success state is true by default.

00000008 hex Read Multiple

A specified number of frames are available, which you
can obtain using either ncReadNetMult or
ncReadObjMult. The number of frames is configured
using the ReadMult Size for Notification attribute of
ncSetAttr.

The state is set whenever the specified number of frames
are stored in the read queue of the object. The state is
cleared when you call the read VI, and less than the
specified number of frames exist in the read queue.

Timeout specifies the maximum number of milliseconds to wait for one of
the states in DesiredState. If the Timeout expires before a state occurs, the
error CanErrFunctionTimeout is returned in Error out (status=T,
code= BFF62001 hex).

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 8 Frame API for LabVIEW — ncWait.vi

NI-CAN Hardware and Software Manual 8-74 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use ncWait.vi to wait for one or more states to occur in the object specified by ObjHandle.

While waiting for the desired states, ncWait.vi suspends execution of the current LabVIEW
thread. VIs assigned to other threads can still execute. The thread of a VI can be changed in
the Priority control in the Execution category of VI properties.

If you want to execute code in the same LabVIEW thread while waiting for NI-CAN states,
refer to ncCreateOccur.vi. It requires more execution time than ncWait, but
ncCreateOccur allows other code in the thread to execute.

Chapter 8 Frame API for LabVIEW — ncWriteNet.vi

© National Instruments Corporation 8-75 NI-CAN Hardware and Software Manual

ncWriteNet.vi

Purpose
Write the data value of an object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

ArbitrationId specifies the arbitration ID of the frame to transmit. A
standard ID (11-bit) is specified by default. In order to specify an extended
ID (29-bit), OR in the bit mask 20000000 hex.

IsRemote indicates the type of frame.

0 Data frame

Transmit CAN data frame.

ArbitrationId is the ID of the data frame to transmit.
DataLength indicates the number of data bytes in the Data array.

1 Remote frame

Transmit CAN remote frame.

ArbitrationId is the ID of the remote frame to transmit.
DataLength is encoded in the remote frame Data Length Code,
but the Data array is not used.

Data provides an array of data bytes to write.

DataLength specifies the number of data bytes.

Data array specifies the data bytes (8 maximum).

Chapter 8 Frame API for LabVIEW — ncWriteNet.vi

NI-CAN Hardware and Software Manual 8-76 ni.com

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
You use ncWriteNet to place a frame into the Network Interface write queue. Since NI-CAN
handles the write queue in the background, this VI does not wait for the frame to be
transmitted on the network.

If your goal is to transmit a set of frames as quickly as possible, simply call ncWriteNet once
per frame, without using ncWait after each write. This technique makes good use of the write
queue to optimize frame transmission.

Once you have written frames, if you need to wait for the final ncWriteNet to be transmitted
successfully, use ncWait with the Write Success state. The Write Success state sets when all

Chapter 8 Frame API for LabVIEW — ncWriteNet.vi

© National Instruments Corporation 8-77 NI-CAN Hardware and Software Manual

frames of the write queue have been successfully transmitted. The Write Success state clears
whenever you call ncWriteNet.

Sporadic, recoverable errors on the network are handled automatically by the CAN protocol.
As such, after ncWriteNet returns successfully, NI-CAN eventually transmits the frame on
the network unless there is a serious network problem. Network problems such as missing or
malfunctioning devices are often reported as the warning CanWarmComm (status=F,
code=3FF6200B hex).

If the write queue is full, a call to ncWriteNet returns the error CanErrOverflowWrite
(status=T, code= BFF62008 hex). In many cases, this error is recoverable, so you
should not exit your application when it occurs. For example, if you want to transmit
thousands of frames in succession (i.e., downloading code), your application can check for
the error CanErrOverflowWrite, and when detected, simply wait a few milliseconds for
some of the frames to transmit, then call ncWriteNet again. If the second call to ncWriteNet
returns an error, that can be treated as an unrecoverable error (no other device is ACKing the
frames).

Although the Network Interface allows Write Queue Length of zero, this is not
recommended, because every new frame will always overwrite the previous frame.

Chapter 8 Frame API for LabVIEW — ncWriteObj.vi

NI-CAN Hardware and Software Manual 8-78 ni.com

ncWriteObj.vi

Purpose
Write a single frame to a CAN Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.
The handle originates from the ncOpenObject VI.

Data array specifies the data bytes (8 maximum).

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is TRUE if an error occurred. If status is TRUE, the VI
does not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 8 Frame API for LabVIEW — ncWriteObj.vi

© National Instruments Corporation 8-79 NI-CAN Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
You use ncWriteObj to place a frame into the CAN Object write queue. Since NI-CAN
handles the write queue in the background, this VI does not wait for the frame to be
transmitted on the network.

Once you have written frames, if you need to wait for the final ncWriteObj to be transmitted
successfully, use ncWait with the Write Success state. The Write Success state sets when all
frames of the write queue have been successfully transmitted. The Write Success state clears
whenever you call ncWriteObj.

The Write Success state does not necessarily mean that all transmission has stopped for the
CAN Object. For example, when the CAN Object Communication Type is Transmit Data
Periodically, the Write Success state sets when the final frame in the write queue is
transmitted, but the previous frame will be transmitted again once the Period expires.

Sporadic, recoverable errors on the network are handled automatically by the CAN protocol.
As such, after ncWriteObj returns successfully, NI-CAN eventually transmits the frame on
the network unless there is a serious network problem. Network problems such as missing or
malfunctioning devices are often reported as the warning CanWarmComm (status=F,
code=3FF6200B hex).

If the write queue is full, a call to ncWriteObj returns the error CanErrOverflowWrite
(status=T, code= BFF62008 hex). In many cases, this error is recoverable, so you
should not exit your application when it occurs. For example, if you want to transmit
thousands of frames in succession (i.e., large waveform transmitted periodically), your
application can check for the error CanErrOverflowWrite, and when detected, simply wait
a few milliseconds for some of the frames to transmit, then call ncWriteObj again. If the
second call to ncWriteObj returns an error, that can be treated as an unrecoverable error (for
example, no other device is ACKing the frames).

If you need to write a sequence of frames to the CAN Object, and ensure that each frame is
transmitted, configure the Write Queue Length of the CAN Object to greater than zero. If
you only need to transmit the most recent frame provided with ncWriteObj, you can set the
Write Queue Length to zero.

Chapter 8 Frame API for LabVIEW — ncWriteObj.vi

NI-CAN Hardware and Software Manual 8-80 ni.com

If the CAN Object Communication Type specifies Receive behavior, the ncWriteObj VI
can be used to transmit a remote frame. When using ncWriteObj to transmit a remote frame,
the Data input can be left unwired.

© National Instruments Corporation 9-1 NI-CAN Hardware and Software Manual

9
Frame API for C

This chapter lists the NI-CAN functions and describes the format, purpose and parameters.

Unless otherwise stated, each NI-CAN function suspends execution of the calling thread until
it completes. The functions in this chapter are listed alphabetically.

Section Headings
The following are section headings found in the Frame API for C functions.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function for the C programming language.

Input and Output
The input and output parameters for each function are listed.

Description
The description section gives details about the purpose and effect of each function.

CAN Network Interface Object
The CAN Network Interface Object section gives details about using the function with the
CAN Network Interface Object.

CAN Object
The CAN Object section gives details about using the function with the CAN Object.

Chapter 9 Frame API for C — Data Types

NI-CAN Hardware and Software Manual 9-2 ni.com

Data Types
The following data types are used with functions of the NI-CAN Frame API for C.

Table 9-1. NI-CAN Frame API for C, Data Types

Data Type Purpose

NCTYPE_INT8 8-bit signed integer

NCTYPE_INT16 16-bit signed integer

NCTYPE_INT32 32-bit signed integer

NCTYPE_UINT8 8-bit unsigned integer

NCTYPE_UINT16 16-bit unsigned integer

NCTYPE_UINT32 32-bit unsigned integer

NCTYPE_BOOL Boolean value. Constants NC_TRUE (1) and
NC_FALSE (0) are used for comparisons.

NCTYPE_STRING ASCII string represented as an array of characters
terminated by null character ('\0').

NCTYPE_type_P Pointer to a variable of type type.

NCTYPE_ANY_P Pointer to a variable of any type, used in cases where
actual data type can vary depending on the object in
use.

NCTYPE_OBJH 32-bit unsigned integer used to reference an open
object in the Frame API.

NCTYPE_ATTRID Attribute identifier. Uses constants with prefix
NC_ATTR_.

NCTYPE_OPCODE Operation code for ncAction function. Uses
constants with prefix NC_OP_.

NCTYPE_STATE Object states, encoded as a 32-bit mask, one bit for each
state. Refer to ncWaitForState for more
information.

Chapter 9 Frame API for C — List of Functions

© National Instruments Corporation 9-3 NI-CAN Hardware and Software Manual

List of Functions
The following table contains an alphabetical list of the NI-CAN Frame API for C functions.

NCTYPE_STATUS Status returned from NI-CAN functions. Refer to
ncStatusToString for more information.

NCTYPE_CAN_ARBID CAN arbitration ID. The 30h bit is accessed using
bitmask NC_FL_CAN_ARBID_XTD (2000000 hex).
If this bit is clear, the CAN arbitration ID is standard
(11-bit). If this bit is set, the CAN arbitration ID is
extended (29-bit). Special constant
NC_CAN_ARBID_NONE (CFFFFFFF hex) indicates no
CAN arbitration ID, and is used to set the comparator
attribute of the CAN Network Interface. Refer to
ncConfig for more information.

Table 9-2. NI-CAN Frame API for C Functions

Function Purpose

ncAction Perform an action on an object.

ncCloseObject Close an object.

ncConfig Configure an object before using it.

ncCreateNotification Create a notification callback for an object.

ncGetAttribute Get the value of an object attribute.

ncGetHardwareInfo Get NI-CAN hardware information.

ncOpenObject Open an object.

ncRead Read the data value of an object.

ncReadMult Read multiple data values from the queue of an object.

ncReset Reset CAN interface.

ncSetAttribute Set the value of an object attribute.

ncStatusToString Convert status code into a descriptive string.

Table 9-1. NI-CAN Frame API for C, Data Types (Continued)

Data Type Purpose

Chapter 9 Frame API for C — List of Functions

NI-CAN Hardware and Software Manual 9-4 ni.com

ncWaitForState Wait for one or more states to occur in an object.

ncWrite Write the data value of an object.

Table 9-2. NI-CAN Frame API for C Functions (Continued)

Function Purpose

Chapter 9 Frame API for C — ncAction

© National Instruments Corporation 9-5 NI-CAN Hardware and Software Manual

ncAction

Purpose
Perform an action on an object.

Format
NCTYPE_STATUS ncAction(

NCTYPE_OBJH ObjHandle,
NCTYPE_OPCODE Opcode,
NCTYPE_UINT32 Param)

Input
ObjHandle Object handle from ncOpenObject.
Opcode Operation code indicating which action to perform.
Param Parameter whose meaning is defined by Opcode.

Output

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncAction is a general purpose function you can use to perform an action on the object
specified by ObjHandle. Its normal use is to start and stop network communication on a
CAN Network Interface Object.

For the most frequently used and/or complex actions, NI-CAN provides functions such as
ncOpenObject and ncRead. ncAction provides an easy, general purpose way to perform
actions that are used less frequently or are relatively simple.

Chapter 9 Frame API for C — ncAction

NI-CAN Hardware and Software Manual 9-6 ni.com

CAN Network Interface Object
NI-CAN propagates all actions on the CAN Network Interface Object up to all open CAN
Objects. Table 9-3 describes the actions supported by the CAN Network Interface Object.

Table 9-3. Actions Supported by the CAN Network Interface Object

Opcode Param Description

NC_OP_START
(80000001 hex)

N/A (ignored) Transitions network interface from stopped
(idle) state to started (running) state. If network
interface is already started, this operation has
no effect. When a network interface is started,
it is communicating on the network. When you
execute NC_OP_START on a stopped CAN
Network Interface Object, NI-CAN propagates it
upward to all open higher-level CAN Objects.
Thus, you can use it to start all higher-level
network communication simultaneously.

NC_OP_STOP
(80000002 hex)

N/A (ignored) Transitions network interface from started
state to stopped state. If network interface is
already stopped, this operation has no effect.
When a network interface is stopped, it is not
communicating on the network. When you
execute NC_OP_STOP on a running CAN
Network Interface Object, NI-CAN propagates it
upward to all open higher-level CAN Objects.

NC_OP_RESET
(80000003 hex)

N/A (ignored) Resets network interface. Stops network
interface, then resets the CAN controller to clear
the CAN error counters (clear error passive
state). Resetting includes clearing all entries
from read and write queues. NC_OP_RESET is
propagated up to all open higher-level CAN
Objects.

NC_OP_RTSI_OUT
(80000004 hex)

N/A (ignored) Output a pulse or toggle on the RTSI line
depending upon the
NC_ATTR_RTSI_SIG_BEHAV

Chapter 9 Frame API for C — ncAction

© National Instruments Corporation 9-7 NI-CAN Hardware and Software Manual

CAN Object
All actions performed on a CAN Object affect that CAN Object alone, and do not affect other
CAN Objects or communication as a whole.

Table 9-4 describes the actions supported by the CAN Object.

Table 9-4. Actions Supported by the CAN Object

Opcode Param Description

NC_OP_RTSI_OUT
(80000004 hex)

N/A (ignored) Output a pulse or toggle on the RTSI line
depending upon the
NC_ATTR_RTSI_SIG_BEHAV

Chapter 9 Frame API for C — ncCloseObject

NI-CAN Hardware and Software Manual 9-8 ni.com

ncCloseObject

Purpose
Close an object.

Format
NCTYPE_STATUS ncCloseObject(NCTYPE_OBJH ObjHandle)

Input
ObjHandle Object handle.

Output

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncCloseObject closes an object when it no longer needs to be in use, such as when the
application is about to exit. When an object is closed, NI-CAN stops all pending operations
and clears RTSI configuration for the object, and you can no longer use the ObjHandle in
your application.

CAN Network Interface Object
ObjHandle refers to an open CAN Network Interface Object.

CAN Object
ObjHandle refers to an open CAN Object.

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-9 NI-CAN Hardware and Software Manual

ncConfig

Purpose
Configure an object before using it.

Format

C
NCTYPE_STATUS ncConfig(

NCTYPE_STRING ObjName,
NCTYPE_UINT32 NumAttrs,
NCTYPE_ATTRID_P AttrIdList,
NCTYPE_UINT32_P AttrValueList)

Input
ObjName ASCII name of the object to configure.
NumAttrs Number of configuration attributes.
AttrIdList List of configuration attribute identifiers.
AttrValueList List of configuration attribute values.

Output

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncConfig initializes the configuration attributes of an object before opening it. The first
NI-CAN function in your application will normally be ncConfig of the CAN Network
Interface Object.

NumAttr indicates the number of configuration attributes in AttrIdList and
AttrValueList. AttrIdList is an array of attribute IDs, and AttrValueList is an array
of values. The host data type for each value in AttrValueList is NCTYPE_UINT32, which
all configuration attributes can use.

The Frame API and Channel API cannot use the same CAN network interface
simultaneously. If the CAN network interface is already initialized in the Channel API, this
function returns an error.

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-10 ni.com

The following sections describe how to use ncConfig with the Network Interface and CAN
Object. The description for each object specifies the syntax for ObjName, plus a description
of the commonly used attributes for AttrIdList.

CAN Network Interface Object
ObjName is the name of the CAN Network Interface Object to configure. This string uses the
syntax “CANx”, where x is a decimal number starting at zero that indicates the CAN network
interface (CAN0, CAN1, up to CAN63). CAN network interface names are associated with
physical CAN ports using the Measurement and Automation Explorer (MAX).

The following attribute IDs are commonly used for Network Interface configuration.

NC_ATTR_START_ON_OPEN (Start On Open)

Start On Open indicates whether communication starts for the
CAN Network Interface Object (and all applicable CAN Objects)
immediately upon opening the object with ncOpenObject.
The default is NC_TRUE (1), which starts communication when
ncOpenObject is called. If you set Start On Open to NC_FALSE
(0), you can call ncSetAttribute after opening the interface, then
ncAction to start communication. The ncSetAttribute function
can be used to set attributes that are not contained within the
ncConfig function.

NC_ATTR_BAUD_RATE (Baud Rate)

Baud Rate is the baud rate to use for communication. Common baud
rates are supported, including 100000, 125000, 250000, 500000, and
1000000. If you are familiar with the Bit Timing registers used in CAN
controllers, you can use a special hexadecimal baud rate of
0x8000zzyy, where yy is the desired value for register 0 (BTR0), and zz
is the desired value for register 1 (BTR1) of the CAN controller.

NC_ATTR_READ_Q_LEN (Read Queue Length)

Read Queue Length is the maximum number of unread frames for
the read queue of the CAN Network Interface Object. A typical value
is 100. For more information, refer to ncRead.

NC_ATTR_WRITE_Q_LEN (Write Queue Length)

Write Queue Length is the maximum number of frames for the
write queue of the CAN Network Interface Object awaiting
transmission. A typical value is 10. For more information, refer to
ncWrite.

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-11 NI-CAN Hardware and Software Manual

NC_ATTR_CAN_COMP_STD (Standard Comparator)

Standard Comparator is the CAN arbitration ID for the standard
(11-bit) frame comparator. For information on how this attribute is
used to filter standard frames for the Network Interface, refer to the
following NC_ATTR_CAN_MASK_STD (Standard Mask) attribute.

If you intend to open the Network Interface, most applications can set
this attribute and the Standard Mask to 0 in order to receive all
standard frames.

If you intend to use CAN Objects as the sole means of receiving
standard frames from the network, you should disable all standard
frame reception in the Network Interface by setting this attribute to the
special value CFFFFFFF hex. With this setting, the Network Interface
is best able to filter out incoming standard frames except those handled
by CAN Objects.

NC_ATTR_CAN_MASK_STD (Standard Mask)

Standard Mask is the bit mask used in conjunction with the
Standard Comparator attribute for filtration of incoming standard
(11-bit) CAN frames. For each bit set in the mask, NI-CAN compares
the corresponding bit in the Standard Comparator to the arbitration
ID of the received frame. If the mask/comparator matches, the frame is
stored in the Network Interface queue, otherwise it is discarded. Bits
in the mask that are clear are treated as don’t-cares. For example, hex
00000700 means to compare only the upper 3 bits of the 11-bit
standard ID.

If you intend to open the Network Interface, most applications can set
this attribute and the Standard Comparator to 0 in order to receive
all standard frames.

If you set the Standard Comparator to CFFFFFFF hex, this
attribute is ignored, because all standard frame reception is disabled
for the Network Interface.

NC_ATTR_CAN_COMP_XTD (Extended Comparator)

Extended Comparator is the CAN arbitration ID for the extended
(29-bit) frame comparator. For information on how this attribute is
used to filter extended frames for the Network Interface, refer to the
following NC_ATTR_CAN_MASK_XTD (Extended Mask) attribute.

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-12 ni.com

If you intend to open the Network Interface, most applications can set
this attribute and the Extended Mask to 0 in order to receive all
extended frames.

If you intend to use CAN Objects as the sole means of receiving
extended frames from the network, you should disable all extended
frame reception in the Network Interface by setting this attribute to the
special value CFFFFFFF hex. With this setting, the Network Interface
is best able to filter out incoming extended frames except those
handled by CAN Objects.

NC_ATTR_CAN_MASK_XTD (Extended Mask)

Extended Mask is the bit mask used in conjunction with the
Extended Comparator attribute for filtration of incoming extended
(29-bit) CAN frames. For each bit set in the mask, NI-CAN compares
the corresponding bit in the Extended Comparator to the arbitration
ID of the received frame. If the mask/comparator matches, the frame is
stored in the Network Interface queue, otherwise it is discarded. Bits
in the mask that are clear are treated as don’t-cares. For example, hex
1F000000 means to compare only the upper 5 bits of the 29-bit
extended ID.

If you intend to open the Network Interface, most applications can set
this attribute and the Extended Comparator to 0 in order to receive
all extended frames.

If you set the Extended Comparator to CFFFFFFF hex, this
attribute is ignored, because all extended frame reception is disabled
for the Network Interface.

NC_ATTR_NOTIFY_MULT_LEN (ReadMult Size for Notification)

Sets the number of frames used as a threshold for the Read Multiple
state. For more information on the Read Multiple state, refer to
ncWaitForState.

The default value is one half of Read Queue Length.

The following attribute ID is used to enable logging of low-speed (LS) faults.

NC_ATTR_LOG_COMM_ERRS (Log Comm Warnings)

Log Comm Warnings specifies whether to log communication
warnings (including LS faults) to the Network Interface read queue.

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-13 NI-CAN Hardware and Software Manual

When set to NC_FALSE (default), the Network Interface reports CAN
communication warnings (including LS faults) in the return status of
read functions. For more information, refer to ncReadMult.

When set to NC_TRUE, the Network Interface reports CAN
communication warnings (including LS faults) by storing a special
frame in the read queue. The communication warnings are not reported
in the return status. For more information on communication warnings
and errors, refer to ncReadMult. The special communication warning
frame uses the following format:

Arbitration ID: Error/warning ID (refer to ncReadMult)

Timestamp: Time when error/warning occurred

IsRemote: 2

DataLength: 0

Data: N/A (ignore)

When calling ncRead or ncReadMult to read frames from the
Network Interface, you typically use the IsRemote field to
differentiate communications warnings from CAN frames. Refer to
ncReadMult for more information.

RTSI is a bus that interconnects National Instruments DAQ, IMAQ, NI-Motion, and CAN
boards. This feature allows synchronization of DAQ, IMAQ, NI-Motion, and CAN boards by
allowing exchange of timing signals. Using RTSI, a device (board) can control one or more
slave devices. PCI/AT boards require a ribbon cable for the connections, but for PXI boards
the connections are available on the PXI chassis backplane. Refer to the NI-CAN User
Manual for more details on the hardware connector.

The following attribute IDs are used to enable RTSI synchronization between two or more
National Instruments cards:

NC_ATTR_RTSI_MODE (RTSI Mode)

RTSI Mode specifies the behavior of the Network Interface with
respect to RTSI, including whether the RTSI signal is an input or
output:

NC_RTSI_NONE

Disables RTSI behavior for the Network Interface
(default). All other RTSI attributes are ignored.

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-14 ni.com

NC_RTSI_TX_ON_IN

The Network Interface will transmit a frame from its
write queue when the RTSI input pulses. To begin
transmission, at least one data frame must be written
using ncWrite. If the write queue becomes empty due to
frame transmissions, the last frame will be retransmitted
on each RTSI pulse until another frame is provided using
ncWrite.

NC_RTSI_TIME_ON_IN

When the RTSI input pulses, a timestamp is measured
and stored in the read queue of the Network Interface.
The special RTSI frame uses the following format:

Arbitration ID: 40000001 hex

Timestamp: Time when RTSI input pulsed

IsRemote: 3 (NC_FRMTYPE_RTSI)

DataLength: RTSI signal detected (RTSI Signal)

Data: N/A (ignore)

When calling ncRead or ncReadMult to read frames
from the Network Interface, use the IsRemote field to
differentiate RTSI timestamps from CAN frames. Refer
to ncReadMult for more information.

Note When you configure a DAQ card to pulse the RTSI signal periodically, do not exceed
1,000 Hertz (pulse every millisecond). If the RTSI input is pulsed faster than 1 kHz on a
consistent basis, CAN performance will be adversely affected (i.e. lost data frames).

NC_RTSI_OUT_ON_RX

The Network Interface will output the RTSI signal
whenever a CAN frame is stored in the read queue.

NC_RTSI_OUT_ON_TX

The Network Interface will output the RTSI signal
whenever a CAN frame is successfully transmitted from
the write queue.

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-15 NI-CAN Hardware and Software Manual

NC_RTSI_OUT_ACTION_ONLY

The Network Interface will output the RTSI signal
whenever the ncAction function is called with Opcode
NC_OP_RTSI_OUT. This RTSI mode can be used to
manually toggle/pulse a RTSI output within your
application.

NC_ATTR_RTSI_SIGNAL (RTSI Signal)

RTSI Signal defines the RTSI signal associated with
the RTSI Mode. Valid values are 0 to 7, corresponding to
RTSI 0 to RTSI 7 on other National Instruments cards.

Note For CAN cards with high-speed (HS) ports only, four (4) RTSI signals are available
for input, and four (4) RTSI signals are available for output. Since each RTSI signal is
assigned to a Network Interface or CAN Object, this means that at most four NI-CAN
objects can use RTSI inputs (or outputs). For example, if you configure five (5) RTSI
signals for input, NI-CAN returns an error, regardless of which RTSI Signal numbers
were used for each.

Note For CAN cards with one or more low-speed (LS) ports, two (2) RTSI signals are
available for input, and three (3) RTSI signals are available for output.

Note For PXI-CAN cards, RTSI Signal 6 is unavailable.

Note Many NI-DAQ cards use RTSI Signal 7 as the 20 MHz clock, so this signal number
should be avoided for other uses.

NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)

RTSI Behavior specifies whether to pulse or toggle a
RTSI output. This attribute is ignored when RTSI Mode
specifies input:

RTSI_SIG_PULSE
Pulse the RTSI output for at least 100
microseconds.

RTSI_SIG_TOGGLE
If the previous state was high, the output toggles
low, then vice-versa.

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-16 ni.com

NC_ATTR_RTSI_SKIP (RTSI Skip)

RTSI Skip specifies the number of RTSI inputs to
skip for RTSI input modes. It is ignored for RTSI
output modes. For example, for RTSI Mode
NC_RTSI_TIME_ON_IN, if the RTSI input pulses every
1 ms, RTSI Skip of 9 means that a timestamp will be
stored in the read queue every 10ms.

CAN Object
ObjName is the name of the CAN Object to configure. This string uses the syntax
“CANx::STDy” or “CANx::XTDy”. CANx is the name of the CAN network interface that you
used for the preceding ncConfig function. STD indicates that the CAN Object uses a
standard (11-bit) arbitration ID. XTD indicates that the CAN Object uses an extended (29-bit)
arbitration ID. The number y specifies the actual arbitration ID of the CAN Object. The
number y is decimal by default, but you can also use hexadecimal by adding “0x” to the
beginning of the number. For example, “CAN0::STD25” indicates standard ID 25 decimal on
CAN0, and “CAN1::XTD0x0000F652” indicates extended ID F652 hexadecimal on CAN1.

In order to configure one or more CAN objects, you must configure the CAN Network
Interface Object first.

The following attribute IDs are commonly used for CAN Object configuration:

NC_ATTR_PERIOD (Period)

Period specifies the rate of periodic behavior in milliseconds.

If you wish to specify the Period in Hertz instead of milliseconds, you
can use the special hexadecimal format 800000xx, where xx is the
desired rate in Hertz. For example, 80000020 hex specifies 32 Hz.

The behavior depends on the Communication Type as follows:

NC_CAN_COMM_TX_PERIODIC

NC_CAN_COMM_TX_WAVEFORM

NC_CAN_COMM_RX_PERIODIC

Period specifies the time between subsequent
transmissions, and must be set greater than
zero.

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-17 NI-CAN Hardware and Software Manual

NC_CAN_COMM_RX_UNSOL

NC_CAN_COMM_TX_RESP_ONLY

Period specifies a watchdog timeout. If a
frame is not received at least once every period,
a timeout error is returned. Setting Period to
zero disables the watchdog timer.

NC_CAN_COMM_TX_BY_CALL

NC_CAN_COMM_RX_BY_CALL

Period specifies a minimum interval between
subsequent transmissions. Even if ncWrite is
called very frequently, frames are transmitted
on the network at a rate no more than Period.
Setting Period to zero disables the minimum
interval timer.

NC_ATTR_READ_Q_LEN (Read Queue Length)

Read Queue Length is the maximum number of unread frames for
the read queue of the CAN Object. For more information, refer to
ncRead.

If Communication Type is set to receive data, a typical value is 10.
If Communication Type is set to transmit data, a typical value is 0.

NC_ATTR_WRITE_Q_LEN (Write Queue Length)

Write Queue Length is the maximum number of frames for the
write queue of the CAN Object awaiting transmission. For more
information, refer to ncWrite.

If Communication Type is set to receive data, a typical value is 0.
If Communication Type is set to transmit data, a typical value is 10.

NC_ATTR_RX_CHANGES_ONLY (Receive Changes Only)

Receive Changes Only applies only to Communication Type
selections in which the CAN Object receives data frames (ignored for
other types). For those configurations, Receive Changes Only
specifies whether duplicated data should be placed in the read queue.
When set to NC_FALSE (default), all data frames for the CAN Object
ID are placed in the read queue. When set to NC_TRUE, data frames
are placed into the read queue only if the data bytes differ from the
previously received data bytes.

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-18 ni.com

This attribute has no effect on the usage of a watchdog timeout for the
CAN Object. For example, if this attribute is NC_TRUE and you also
specify a watchdog timeout, NI-CAN restarts the watchdog timer
every time it receives a data frame for the CAN Object ID, regardless
of whether the data differs from the previous frame in the read queue.

NC_ATTR_COMM_TYPE (Communication Type)

Communication Type specifies the behavior of the CAN Object with
respect to its ID, including the direction of data transfer:

NC_CAN_COMM_RX_UNSOL (Receive Unsolicited)
Receive data frames for a specific ID.

This type is useful for receiving a few IDs
(1–10) into dedicated read queues. For high
performance applications (more IDs, fast frame
rates), the Network Interface is recommended
to receive all IDs.

Period specifies a watchdog timeout, and
Receive Changes Only specifies whether to
place duplicate data frames into the read queue.
Transmit by Response is ignored.

NC_CAN_COMM_RX_PERIODIC (Receive Periodic Using
Remote)

Periodically transmit remote frame for a
specific ID in order to receive the associated
data frame. Every Period the CAN Object
transmits a remote frame, and then places the
resulting data frame response in the read queue.

Period specifies the periodic rate, and
Receive Changes Only specifies whether to
place duplicate data frames into the read queue.
Transmit by Response is ignored.

NC_CAN_COMM_RX_BY_CALL (Receive By Call Using
Remote)

Transmit remote frame for a specific ID by
calling ncWrite. The CAN Object places the
resulting data frame response in the read queue.

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-19 NI-CAN Hardware and Software Manual

Period specifies a minimum interval, and
Receive Changes Only specifies whether to
place duplicate data frames into the read queue.
Transmit by Response is ignored.

NC_CAN_COMM_TX_PERIODIC (Transmit Data
Periodically)

Periodically transmit data frame for a specific
ID. When the CAN Object transmits the last
entry from the write queue, that entry is used
every period until you provide a new data frame
using ncWrite. If you keep the write queue
filled with unique data, this behavior allows you
to ensure that each period transmits a unique
data frame.

If the write queue is empty when
communication starts, the first periodic transmit
does not occur until you provide the first data
frame with ncWrite.

This is the most commonly used CAN Object
type. If you are not using remote frames, you
can use multiple CAN Objects of this type, and
the Network Interface for all other access
(event-driven transmit and all receive).

Period specifies the periodic rate, and
Transmit by Response specifies whether to
transmit the previous period data in response to
a remote frame. Receive Changes Only is
ignored.

NC_CAN_COMM_TX_RESP_ONLY (Transmit By
Response Only)

Transmit data frame for a specific ID only in
response to a received remote frame. When you
call ncWrite, the data is placed in the write
queue, and remains there until a remote frame is
received.

Period specifies a watchdog timeout.
Transmit by Response is assumed as TRUE
regardless of the attribute setting. Receive
Changes Only is ignored.

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-20 ni.com

NC_CAN_COMM_TX_BY_CALL (Transmit Data By Call)
Transmit data frame when ncWrite is called.
When ncWrite is called quickly, data frames
are placed in the write queue for back to back
transmit.

Period specifies a minimum interval, and
Transmit by Response specifies whether to
retransmit the previous data frame in response
to a remote frame. Receive Changes Only is
ignored.

NC_CAN_COMM_TX_WAVEFORM (Transmit Periodic
Waveform)

Transmit a fixed sequence of data frames over
and over, one data frame every Period.

The following steps describe typical usage of
this type:

1. Configure CAN Network Interface Object
with Start On Open FALSE, then open
the Network Interface.

2. Configure the CAN Object as Transmit
Periodic Waveform and a nonzero Write
Queue Length, then open the CAN
Object.

3. Call ncWrite for the CAN Object, once
for every entry specified for the Write
Queue Length.

4. Use ncAction to start the Network
Interface (not the CAN Object). The CAN
Object transmits the first frame in the write
queue, then waits the specified period, then
transmits the second frame, and so on.
After the last frame is transmitted, the
CAN Objects waits the specified period,
then transmits the first frame again.

If you need to change the waveform contents at
runtime, or if you need to transmit very large
waveforms (more than 100 frames), we
recommend using the
NC_CAN_COMM_TX_PERIODIC type. Using that

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-21 NI-CAN Hardware and Software Manual

type, you can write frames to the Write Queue
until full (overflow error), then wait some time
for a few frames to transmit, then continue
writing new frames.

Period specifies the periodic rate. Transmit
by Response and Receive Changes Only
are ignored.

NC_ATTR_TX_RESPONSE (Transmit By Response)

Transmit By Response applies only to Communication Type of
Transmit Data by Call and Transmit Data Periodically (ignored for
other types). For those configurations, Transmit By Response
specifies whether the CAN Object should automatically respond with
the previously transmitted data frame when it receives a remote frame.
When set to NC_FALSE (default), the CAN Object transmits data
frames only as configured, and ignores all remote frames for its ID.
When set to NC_TRUE, the CAN Object responds to incoming remote
frames.

NC_ATTR_DATA_LEN (Data Length)

Data Length specifies the number of bytes in the data frames for this
CAN Object ID. This number is placed in the Data Length Code
(DLC) of all transmitted data frames and remote frames for the CAN
Object. This is also the number of data bytes returned from ncRead
when the communication type indicates receive.

NC_ATTR_NOTIFY_MULT_LEN (ReadMult Size for Notification)

Sets the number of frames used as a threshold for the Read Multiple
state. For more information on the Read Multiple state, refer to
ncWaitForState.

The default value is one half of Read Queue Length.

RTSI is a bus that interconnects National Instruments DAQ, IMAQ, NI-Motion, and CAN
boards. This feature allows synchronization of DAQ, IMAQ, NI-Motion, and CAN boards by
allowing exchange of timing signals. Using RTSI, a device (board) can control one or more
slave devices. PCI/AT boards require a ribbon cable for the connections, but for PXI boards
the connections are available on the PXI chassis backplane. Refer to the NI-CAN User
Manual for more details on the hardware connector.

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-22 ni.com

The following attribute IDs are used to enable RTSI synchronization between two or more
National Instruments cards:

NC_ATTR_RTSI_MODE (RTSI Mode)

RTSI Mode specifies the behavior of the CAN Object with respect to
RTSI, including whether the RTSI signal is an input or output:

NC_RTSI_NONE
Disables RTSI behavior for the CAN Object
(default). All other RTSI attributes are ignored.

NC_RTSI_TX_ON_IN
The CAN Object will transmit a frame from its
write queue when the RTSI input pulses. To
begin transmission, at least one data frame must
be written using ncWrite. If the write queue
becomes empty due to frame transmissions, the
last frame will be retransmitted on each RTSI
pulse until another frame is provided using
ncWrite.

In order to use this RTSI Mode, you must
configure the CAN Object Communication
Type to either Transmit Data by Call, Transmit
Data Periodically, or Transmit Periodic
Waveform. The Period attribute is ignored
when this RTSI mode is selected.

NC_RTSI_TIME_ON_IN
When the RTSI input pulses, a timestamp is
measured and stored in the read queue of the
CAN Object. The special RTSI frame uses the
following format:

Timestamp: Time when RTSI input pulsed

Data: User-defined 4 byte data pattern
(refer to RTSI Frame for details)

Note When you configure a DAQ card to pulse the RTSI signal periodically, do not exceed
1,000 Hertz (pulse every millisecond). If the RTSI input is pulsed faster than 1 kHz on a
consistent basis, CAN performance will be adversely affected (i.e. lost data frames).

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-23 NI-CAN Hardware and Software Manual

NC_RTSI_OUT_ON_RX
The CAN Object will output the RTSI signal
whenever a CAN frame is stored in its read
queue.

In order to use this RTSI Mode, you must
configure the CAN Object Communication
Type to Receive Unsolicited.

NC_RTSI_OUT_ON_TX
The CAN Object will output the RTSI signal
whenever a CAN frame is successfully
transmitted.

In order to use this RTSI Mode, you must
configure the CAN Object Communication
Type to either Transmit Data by Call, Transmit
Data Periodically, or Transmit Periodic
Waveform.

NC_RTSI_OUT_ACTION_ONLY
The CAN Object will output the RTSI signal
whenever the ncAction function is called with
Opcode NC_OP_RTSI_OUT. This RTSI mode
can be used to manually toggle/pulse a RTSI
output within your application.

NC_ATTR_RTSI_SIGNAL (RTSI Signal)

RTSI Signal defines the RTSI signal associated with the RTSI
Mode. Valid values are 0 to 7, corresponding to RTSI 0 to RTSI 7 on
other National Instruments cards.

Note For CAN cards with high-speed (HS) ports only, four (4) RTSI signals are available
for input, and four (4) RTSI signals are available for output. Since each RTSI signal is
assigned to a Network Interface or CAN Object, this means that at most four NI-CAN
objects can use RTSI inputs (or outputs). For example, if you configure five (5) RTSI
signals for input, NI-CAN returns an error, regardless of which RTSI Signal numbers
were used for each.

Note For CAN cards with one or more low-speed (LS) ports, two (2) RTSI signals are
available for input, and three (3) RTSI signals are available for output.

Note For PXI-CAN cards, RTSI Signal 6 is unavailable.

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-24 ni.com

Note Many NI-DAQ cards use RTSI Signal 7 as the 20 MHz clock, so this signal number
should be avoided for other uses.

NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)

RTSI Behavior specifies whether to pulse or toggle a RTSI output.
This attribute is ignored when RTSI Mode specifies input:

RTSI_SIG_PULSE
Pulse the RTSI output for at least 100
microseconds.

RTSI_SIG_TOGGLE
If the previous state was high, the output toggles
low, then vice-versa.

NC_ATTR_RTSI_SKIP (RTSI Skip)

RTSI Skip specifies the number of RTSI inputs to skip for RTSI input
modes. It is ignored for RTSI output modes. For example, for RTSI
Mode NC_RTSI_TIME_ON_IN, if the RTSI input pulses every 1 ms,
RTSI Skip of 9 means that a timestamp will be stored in the read
queue every 10 ms.

NC_ATTR_RTSI_FRAME (RTSI Frame)

RTSI Frame specifies a 4-byte pattern used to differentiate RTSI
timestamps from CAN data frames. It is provided as a U32, and the
high byte is stored as byte 0 from ncRead. For example, AABBCCDD
hex is returned as AA in byte 0, BB in byte 1, and so on.

This attribute is used only for RTSI Mode NC_RTSI_TIME_ON_IN.
It is ignored for all other RTSI Mode values.

Examples of Different Communication Types
The following figures demonstrate how you can use the Communication Type attribute for
actual network data transfer. Each figure shows two separate NI-CAN applications that are
physically connected across a CAN network.

Chapter 9 Frame API for C — ncConfig

© National Instruments Corporation 9-25 NI-CAN Hardware and Software Manual

Figure 9-1 shows a CAN Object that periodically transmits data to another CAN Object.
The receiving CAN Object can queue up to five data values.

Figure 9-1. Example of Periodic Transmission

Figure 9-2 shows a CAN Object that polls data from another CAN Object. NI-CAN transmits
the CAN remote frame when you call ncWrite.

Figure 9-2. Example of Polling Remote Data Using ncWrite

Periodic Timer
(Obtains Data to
Transmit Every

Period)

Receive Unsolicited
NC_ATTR_READ_Q_LEN=5

NC_ATTR_RX_CHANGES_ONLY=NC_FALSE

Read Queue

Transmit Data Periodically
NC_ATTR_WRITE_Q_LEN=0

ncWritencRead

NI-CAN Driver NI-CAN DriverCAN
Network

Your
Application

Your
Application

Response Uses
Most Recent
Write Data

Receive Data by
Call Using Remote
NC_ATTR_READ_Q_LEN=0

Transmit by Response Only
NC_ATTR_WRITE_Q_LEN=0

NI-CAN Driver NI-CAN DriverCAN
Network

ncWrite

ncRead

ncWrite

Your
Application

Your
Application

Chapter 9 Frame API for C — ncConfig

NI-CAN Hardware and Software Manual 9-26 ni.com

Figure 9-3 shows a CAN Object that polls data from another CAN Object. NI-CAN transmits
the remote frame periodically and places only changed data into the read queue.

Figure 9-3. Example of Periodic Polling of Remote Data

Response Uses
Most Recent
Write Data

Receive Periodically
Using Remote

NC_ATTR_READ_Q_LEN=3
NC_ATTR_RX_CHANGES_ONLY=NC_TRUE

Transmit by Response Only
NC_ATTR_WRITE_Q_LEN=0

Check For
Different Value

Periodic Timer

NI-CAN Driver NI-CAN DriverCAN
Network

ncRead ncWrite

Your
Application

Your
Application

Chapter 9 Frame API for C — ncCreateNotification

© National Instruments Corporation 9-27 NI-CAN Hardware and Software Manual

ncCreateNotification

Purpose
Create a notification callback for an object.

Format
NCTYPE_STATUS ncCreateNotification(

NCTYPE_OBJH ObjHandle,
NCTYPE_STATE DesiredState,
NCTYPE_UINT32 Timeout,
NCTYPE_ANY_P RefData,
NCTYPE_NOTIFY_CALLBACK

Callback)

Input
ObjHandle Object handle.
DesiredState States for which notification is sent.
Timeout Length of time to wait in milliseconds.
RefData Pointer to user-specified reference data.
Callback Address of your callback function.

Output

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncCreateNotification creates a notification callback for the object specified by
ObjHandle. The NI-CAN driver uses the notification callback to communicate state changes
to your application.

This function is normally used when you want to allow other code to execute while waiting
for NI-CAN states, especially when the other code does not call NI-CAN functions. If such
background execution is not needed, the ncWaitForState function offers better overall
performance. The ncWaitForState function cannot be used at the same time as
ncCreateNotification.

Upon successful return from ncCreateNotification, the notification callback is
invoked whenever one of the states specified by DesiredState occurs in the object.

Chapter 9 Frame API for C — ncCreateNotification

NI-CAN Hardware and Software Manual 9-28 ni.com

If DesiredState is zero, notifications are disabled for the object specified by ObjHandle.
DesiredState specifies a bit mask for which notification is desired. You can use a single
state alone, or you can OR them together.

NC_ST_READ_AVAIL (00000001 hex)

At least one frame is available, which you can obtain using an
appropriate read function.

The state is set whenever a frame arrives for the object. The state is
cleared when the read queue is empty.

NC_ST_WRITE_SUCCESS (00000002 hex)

All frames provided with a write function have been successfully
transmitted onto the network. Successful transmit means that the frame
won arbitration, and was acknowledged by a remote device.

The state is set when the last frame in the write queue is transmitted
successfully. The state is cleared when a write function is called.

For CAN Objects, Write Success does not always mean that
transmission has stopped. For example, if a CAN Object is configured
for Transmit Data Periodically, Write Success occurs when the write
queue has been emptied, but periodic transmit of the last frame
continues.

When communication starts, the NC_ST_WRITE_SUCCESS state is true
by default.

NC_ST_READ_MULT (00000008 hex)

A specified number of frames are available, which you can obtain
using ncReadMult. The number of frames is one half the Read
Queue Length by default, but you can change it using the
ReadMult Size for Notification attribute of
ncSetAttribute.

The state is set whenever the specified number of frames are stored in
the read queue of the object. The state is cleared when you call the read
function, and less than the specified number of frames exist in the read
queue.

The NI-CAN driver waits up to Timeout for one of the bits set in DesiredState to
become set in the attribute NC_ATTR_STATE. You can use the special Timeout value
NC_DURATION_INFINITE to wait indefinitely.

Chapter 9 Frame API for C — ncCreateNotification

© National Instruments Corporation 9-29 NI-CAN Hardware and Software Manual

The Callback parameter provides the address of a callback function in your application.
Within the Callback function, you can call any of the NI-CAN functions except
ncCreateNotification and ncWaitForState.

With the RefData parameter, you provide a pointer that is sent to all notifications for the
given object. This pointer normally provides reference data for use within the Callback
function. For example, when you create a notification for the NC_ST_READ_AVAIL state,
RefData is often the data pointer that you pass to ncRead to read available data. If the
callback function does not need reference data, you can set RefData to NULL.

Callback Prototype
NCTYPE_STATE _NCFUNC_ Callback (NCTYPE_OBJH ObjHandle,

NCTYPE_STATE State,
NCTYPE_STATUS Status,
NCTYPE_ANY_P RefData);

Callback Parameters
ObjHandle Object handle.
State Current state of object.
Status Object status.
RefData Pointer to your reference data.

Callback Return Value
The value you return from the callback indicates the desired states to re-enable for
notification. If you no longer want to receive notifications for the callback, return a value
of zero.

If you return a state from the callback, and that state is still set in the NC_ATTR_STATE
attribute, the callback is invoked again immediately after it returns. For example, if you return
NC_ST_READ_AVAIL when the read queue has not been emptied, the callback is invoked
again.

Callback Description
In the prototype for Callback, _NCFUNC_ ensures a proper calling scheme between the
NI-CAN driver and your callback.

The Callback function executes in a separate thread in your process. Therefore, it has access
to any process global data, but not to thread local data. If the callback needs to access global
data, you must protect that access using synchronization primitives (such as semaphores),
because the callback is running in a different thread context. Alternatively, you can avoid the
issue of data protection entirely if the callback simply posts a message to your application

Chapter 9 Frame API for C — ncCreateNotification

NI-CAN Hardware and Software Manual 9-30 ni.com

using the Win32 PostMessage function. For complete information on multithreading issues,
refer to the Win32 Software Development Kit (SDK) online help.

In LabWindows/CVI, you cannot access User Interface library functions within the callback
thread. To defer a callback for User Interface interaction, use the CVI PostDeferredCall
function. For more information, refer to the LabWindows/CVI documentation.

The ObjHandle is the same object handle passed to ncCreateNotification. It identifies
the object generating the notification, which is useful when you use the same callback
function for notifications from multiple objects.

The State parameter holds the current state(s) of the object that generated the notification
(NC_ATTR_STATE attribute). If the Timeout passed to ncCreateNotification expires
before the desired states occur, the NI-CAN driver invokes the callback with State equal
to zero.

The Status parameter holds the current status of the object. If an error occurs, State is zero
and Status holds the error status. The most common notification error occurs when the
Timeout passed to ncCreateNotification expires before the desired states occur
(CanErrFunctionTimeout status code). If no error is reported, Status is CanSuccess.

The RefData parameter is the same pointer passed to ncCreateNotification, and it
accesses reference data for the Callback function.

Chapter 9 Frame API for C — ncGetAttribute

© National Instruments Corporation 9-31 NI-CAN Hardware and Software Manual

ncGetAttribute

Purpose
Get the value of an object attribute.

Format
NCTYPE_STATUS ncGetAttribute(

NCTYPE_OBJH ObjHandle,
NCTYPE_ATTRID AttrId,
NCTYPE_UINT32 AttrSize,
NCTYPE_ANY_P AttrPtr)

Input
ObjHandle Object handle.
AttrId Identifier of the attribute to get.
AttrSize Size of the attribute in bytes.

Output
AttrPtr Pointer used to return attribute value.

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncGetAttribute gets the value of the attribute specified by AttrId from the object
specified by ObjHandle. Within NI-CAN objects, you use attributes to access configuration
settings, status, and other information about the object, but not data.

AttrPtr points to the variable used to receive the attribute value. Its type is undefined so that
you can use the appropriate host data type for AttrId. AttrSize indicates the size of the
variable that AttrPtr points to. AttrSize is typically 4, and AttrPtr references a 32-bit
unsigned integer.

You can get any of the AttrId mentioned in ncConfig using ncGetAttribute.
The following list describes other AttrId you can get using ncGetAttribute:

NC_ATTR_PROTOCOL (Protocol)

For NI-CAN, this always returns 1.

Chapter 9 Frame API for C — ncGetAttribute

NI-CAN Hardware and Software Manual 9-32 ni.com

For NI-DNET, this always returns 2.

This attribute is available only from the Network Interface, not CAN
Objects.

NC_ATTR_PROTOCOL_VERSION (Protocol Version)

For NI-CAN, this returns 02000200 hex, which corresponds to
version 2.0B of the Bosch CAN specifications. For more information
on the encoding of the version, refer to Software Version.

This attribute is available only from the Network Interface, not CAN
Objects.

NC_ATTR_SOFTWARE_VERSION (Software Version)

Version of the NI-CAN software, with major, minor, update, and beta
build numbers encoded in the U32 from high to low bytes. For
example, 2.0.1 would be 02000100 hex, and 2.1beta5 would be
02010005 hex.

This attribute is available only from the Network Interface, not CAN
Objects.

NC_ATTR_STATE (Object State)

Returns the current state bit mask of the object. Polling with
ncGetAttr provides an alternative method of state detection than
ncWaitForState or ncCreateNotification. For more
information on the states returned from this attribute, refer to the
DesiredState input of ncWaitForState.

NC_ATTR_READ_PENDING (Read Entries Pending)

Returns the number of frames available in the read queue. Polling the
available frames with this attribute can be used as an alternative to the
ncWaitForState and ncCreateNotification functions.

NC_ATTR_WRITE_PENDING (Write Entries Pending)

Returns the number of frames pending transmission in the write queue.
If your intent is to verify that all pending frames have been transmitted
successfully, waiting for the Write Success state is preferable to this
attribute.

Chapter 9 Frame API for C — ncGetAttribute

© National Instruments Corporation 9-33 NI-CAN Hardware and Software Manual

NC_ATTR_NOTIFY_MULT_LEN (ReadMult Size for Notification)

Returns the number of frames used as a threshold for the Read Multiple
state. For more information, refer to this attribute in
ncSetAttribute.

NC_ATTR_ABS_TIME (Absolute Timestamp)

Returns the absolute timestamp value. The timestamp format is a
64-bit unsigned integer compatible with the Win32 FILETIME type
(NCTYPE_ABS_TIME). This absolute time is kept in a Coordinated
Universal Time (UTC) format. UTC time is loosely defined as the
current date and time of day in Greenwich England. Microsoft defines
its UTC time (FILETIME) as a 64-bit counter of 100ns intervals that
have elapsed since 12:00 a.m., January 1, 1601.

Since the timestamp returned by ncRead (and this attribute) is
compatible with Win32 FILETIME, you can pass it into the Win32
FileTimeToLocalFileTime function to convert it to your local time
zone, then pass the resulting local time to the Win32
FileTimeToSystemTime function to convert to the Win32
SYSTEMTIME type. SYSTEMTIME is a struct with fields for year,
month, day, and so on. For more information on Win32 time types and
functions, refer to your Microsoft Win32 documentation.

Since the absolute timestamp type is 64 bits (NCTYPE_ABS_TIME),
you must use AttrSize of 8.

NC_ATTR_HW_SERIAL_NUM (Serial Number)

Returns the serial number of the card on which the Network Interface
or CAN Object is located.

NC_ATTR_HW_FORMFACTOR (Form Factor)

Returns the form factor of the card on which the Network Interface or
CAN Object is located.

The returned Form Factor is an enumeration.

NC_HW_FORMFACTOR_PCI PCI

NC_HW_FORMFACTOR_PXI PXI

NC_HW_FORMFACTOR_PCMCIA PCMCIA

NC_HW_FORMFACTOR_AT AT

Chapter 9 Frame API for C — ncGetAttribute

NI-CAN Hardware and Software Manual 9-34 ni.com

NC_ATTR_HW_TRANSCEIVER (Transceiver)

Returns the CAN transceiver of the port on which the Network
Interface or CAN Object is located.

The returned Transceiver is an enumeration.

NC_HW_TRANSCEIVER_HS HS

NC_HW_TRANSCEIVER_LS LS

This attribute is not supported on the PCMCIA form factor.

NC_ATTR_INTERFACE_NUM (Interface Number)

Returns the interface number of the port on which the Network
Interface or CAN Object is located.

This is the same number that you used in the ObjName string of the
previous ncConfig and ncOpenObject functions.

Chapter 9 Frame API for C — ncGetHardwareInfo

© National Instruments Corporation 9-35 NI-CAN Hardware and Software Manual

ncGetHardwareInfo

Purpose
Get NI-CAN hardware information.

Format
NCTYPE_STATUS _NCFUNC_ ncGetHardwareInfo(

NCTYPE_UINT32 CardNumber,
NCTYPE_UINT32 PortNumber,
NCTYPE_ATTRID AttrId,
NCTYPE_UINT32 AttrSize,
NCTYPE_ANY_P AttrPtr);

Input
CardNumber Specifies the CAN card number from 1 to Number of Cards,

where Number of Cards is the number of CAN cards in your
system. You can obtain Number of Cards using this function
with CardNumber = 1, PortNumber = 1, and AttrID = Number
of Cards.

PortNumber Specifies the CAN port number from 1 to Number of Ports,
where Number of Ports is the number of CAN ports on this
CAN card. You can obtain Number of Ports using this function
with PortNumber = 1, and AttrID = Number of Ports.

AttrID Specifies the attribute to get:

NC_ATTR_VERSION_MAJOR (Version Major)

Returns the major version of the NI-CAN software. AttrPtr must
point to NCTYPE_UINT32, and AttrSize must be 4. Use
CardNumber 1 and PortNumber 1 as inputs.

The major version is the ‘X’ in X.Y.Z.

NC_ATTR_VERSION_MINOR (Version Minor)

Returns the minor version of the NI-CAN software. AttrPtr must
point to NCTYPE_UINT32, and AttrSize must be 4. Use
CardNumber 1 and PortNumber 1 as inputs.

The major version is the ‘Y’ in X.Y.Z.

Chapter 9 Frame API for C — ncGetHardwareInfo

NI-CAN Hardware and Software Manual 9-36 ni.com

NC_ATTR_VERSION_UPDATE (Version Update)

Returns the update version of the NI-CAN software. AttrPtr must
point to NCTYPE_UINT32, and AttrSize must be 4. Use
CardNumber 1 and PortNumber 1 as inputs.

The major version is the ‘Z’ in X.Y.Z.

NC_ATTR_VERSION_PHASE (Version Phase)

Returns the phase of the NI-CAN software. AttrPtr must point to
NCTYPE_UINT32, and AttrSize must be 4. Use CardNumber 1
and PortNumber 1 as inputs.

Phase 1 specifies Alpha, phase 2 specifies Beta, and phase 3 specifies
Final release. Unless you are participating in an NI-CAN beta
program, you will always see 3.

NC_ATTR_VERSION_BUILD (Version Build)

Returns the build of the NI-CAN software. AttrPtr must point to
NCTYPE_UINT32, and AttrSize must be 4. Use CardNumber 1
and PortNumber 1 as inputs.

With each software development phase, subsequent NI-CAN builds
are numbered sequentially. A given Final release version always uses
the same build number, so unless you are participating in an NI-CAN
beta program, this build number is not relevant.

NC_ATTR_VERSION_COMMENT (Version Comment)

Returns any special comment on the NI-CAN software. AttrPtr must
point to a buffer for the string, and AttrSize specifies the number of
characters in that buffer. Use CardNumber 1 and PortNumber 1 as
inputs.

This string is normally empty for a Final release. In rare circumstances,
an NI-CAN prototype or patch may be released to a specific customer.
For these special releases, the version comment describes the special
features of the release.

NC_ATTR_NUM_CARDS (Number of Cards)

Returns the number of NI-CAN cards in your system. AttrPtr must
point to NCTYPE_UINT32, and AttrSize must be 4. Use
CardNumber 1 and PortNumber 1 as inputs.

Chapter 9 Frame API for C — ncGetHardwareInfo

© National Instruments Corporation 9-37 NI-CAN Hardware and Software Manual

If you are displaying all hardware information, you get this attribute
first, then iterate through all CAN cards with a For loop. Inside the card
For loop, you get all card-wide attributes including Number Of Ports,
then use another For loop to get port-wide attributes.

NC_ATTR_HW_SERIAL_NUM (Serial Number)

Card-wide attribute that returns the serial number of the card.
AttrPtr must point to NCTYPE_UINT32, and AttrSize must be 4.
Use the desired CardNumber, and PortNumber 1 as inputs.

NC_ATTR_HW_FORMFACTOR (Form Factor)

Card-wide attribute that returns the form factor of the card. AttrPtr
must point to NCTYPE_UINT32, and AttrSize must be 4. Use the
desired CardNumber, and PortNumber 1 as inputs.

The returned Form Factor is an enumeration.

NC_HW_FORMFACTOR_PCI PCI

NC_HW_FORMFACTOR_PXI PXI

NC_HW_FORMFACTOR_PCMCIA PCMCIA

NC_HW_FORMFACTOR_AT AT

NC_ATTR_NUM_PORTS (Number of Ports)

Card-wide attribute that returns the number of ports on the card.
AttrPtr must point to NCTYPE_UINT32, and AttrSize must be 4.
Use the desired CardNumber, and PortNumber 1 as inputs.

If you are displaying all hardware information, you get this attribute
within the For loop for all cards, then iterate through all CAN ports to
get port-wide attributes.

NC_ATTR_HW_TRANSCEIVER (Transceiver)

Port-wide attribute that returns the CAN transceiver of the port.
AttrPtr must point to NCTYPE_UINT32, and AttrSize must be 4.
Use the desired CardNumber and PortNumber as inputs.

The returned Transceiver is an enumeration.

NC_HW_TRANSCEIVER_HS HS

NC_HW_TRANSCEIVER_LS LS

Chapter 9 Frame API for C — ncGetHardwareInfo

NI-CAN Hardware and Software Manual 9-38 ni.com

This attribute is not supported on the PCMCIA form factor.

NC_ATTR_INTERFACE_NUM (Interface Number)

Port-wide attribute that returns the interface number of the port.
AttrPtr must point to NCTYPE_UINT32, and AttrSize must be 4.
Use the desired CardNumber and PortNumber as inputs.

The interface number is assigned to a physical port using the
Measurement and Automation Explorer (MAX). The interface number
is used as a string in the Frame API (i.e. “CAN0”). The interface
number is used for the Interface input in the Channel API.

AttrSize Size of the attribute in bytes.

Output
AttrPtr Pointer used to return attribute value.

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
This function provides information about available CAN cards, but does not require you to
open/start sessions. First get Number of Cards, then loop for each card. For each card, you
can get card-wide attributes (such as Form Factor), and you can also get the Number of
Ports. For each port, you can get port-wide attributes such as the Transceiver.

Chapter 9 Frame API for C — ncOpenObject

© National Instruments Corporation 9-39 NI-CAN Hardware and Software Manual

ncOpenObject

Purpose
Open an object.

Format
NCTYPE_STATUS ncOpenObject(

NCTYPE_STRING ObjName,
NCTYPE_OBJH_P ObjHandlePtr)

Input
ObjName ASCII name of the object to open.

Output
ObjHandlePtr Pointer used to return Object handle. Used with all subsequent

NI-CAN function calls.

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncOpenObject takes the name of an object to open and returns a handle to that object that
you use with subsequent NI-CAN function calls.

The Frame API and Channel API cannot use the same CAN network interface
simultaneously. If the CAN network interface is already initialized in the Channel API, this
function returns an error.

Although NI-CAN can generally be used by multiple applications simultaneously, it does not
allow more than one application to open the same object. For example, if one application
opens CAN0, and another application attempts to open CAN0, the second ncOpenObject
returns the error CanErrAlreadyOpen. It is legal for one application to open CAN0::STD14
and another application to open CAN0::STD21, because the two objects are considered
distinct.

If ncOpenObject is successful, a handle to the newly opened object is returned. You use this
object handle for all subsequent function calls for the object.

Chapter 9 Frame API for C — ncOpenObject

NI-CAN Hardware and Software Manual 9-40 ni.com

The following sections describe how to use ncOpenObject with the Network Interface and
Can Object.

Network Interface
ObjName is the name of the CAN Network Interface Object to configure. This string uses the
syntax “CANx”, where x is a decimal number starting at zero that indicates the CAN network
interface (CAN0, CAN1, up to CAN63). CAN network interface names are associated with
physical CAN ports using the Measurement and Automation Explorer (MAX).

CAN Object
ObjName is the name of the CAN Object to configure. This string uses the syntax
“CANx::STDy” or “CANx::XTDy”. CANx is the name of the CAN network interface that you
used for the preceding ncConfig function. STD indicates that the CAN Object uses a
standard (11-bit) arbitration ID. XTD indicates that the CAN Object uses an extended (29-bit)
arbitration ID. The number y specifies the actual arbitration ID of the CAN Object. The
number y is decimal by default, but you can also use hexadecimal by adding 0x to the
beginning of the number. For example, CAN0::STD25 indicates standard ID 25 decimal on
CAN0, and CAN1::XTD0x0000F652 indicates extended ID F652 hexadecimal on CAN1.

Chapter 9 Frame API for C — ncRead

© National Instruments Corporation 9-41 NI-CAN Hardware and Software Manual

ncRead

Purpose
Read single frame from an object.

Format
NCTYPE_STATUS ncRead(

NCTYPE_OBJH ObjHandle,
NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr)

Input
ObjHandle Object handle.
DataSize Size of the data in bytes.

Output
DataPtr Pointer used to return the frame.

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncRead reads a single frame from the object specified by ObjHandle.

DataPtr points to the variable that holds the data. Its type is undefined so that you can use
the appropriate host data type. DataSize indicates the size of variable pointed to by
DataPtr, and is used to verify that the size you have available is compatible with the
configured read size for the object.

For information on the data type to use with DataPtr, refer to the following Network
Interface and CAN Object descriptions.

You use ncRead to obtain data from the read queue of an object. Because NI-CAN handles
the read queue in the background, this function does not wait for new data to arrive. To ensure
that new data is available before calling ncRead, first wait for the NC_ST_READ_AVAIL state.
The NC_ST_READ_AVAIL state transitions from false to true when NI-CAN places a new data
item into an empty read queue, and remains true until you read the last data item from the
queue.

Chapter 9 Frame API for C — ncRead

NI-CAN Hardware and Software Manual 9-42 ni.com

The ncRead function is useful when you need to process one frame at a time. In order to read
multiple frames, such as for bus analyzer applications, use the ncReadMult function.

When you call ncRead for an empty read queue (NC_ST_READ_AVAIL false), the data from
the previous call to ncRead is returned to you again, along with the CanWarnOldData
warning. If no data item has yet arrived for the read queue, a default data item is returned,
which consists of all zeros.

When a new data item arrives for a full queue, NI-CAN discards the item, and the next
call to ncRead returns the CanErrOverflowRead error. You can avoid this overflow
behavior by setting the read queue length to zero. When a new data item arrives for a zero
length queue, it simply overwrites the previous item without indicating an overflow. The
NC_ST_READ_AVAIL state and CanWarnOldData warning still behave as usual, but you can
ignore them if you only want the most recent data. You can use the NC_ATTR_READ_Q_LEN
attribute to configure the read queue length.

CAN Network Interface Object
The data type that you use with ncRead of the Network Interface is NCTYPE_FRAME_STRUCT.
When calling ncRead, you should pass sizeof(NCTYPE_FRAME_STRUCT) for the DataSize
parameter.

Within the NCTYPE_FRAME_STRUCT structure, the FrameType field determines the meaning
of all other fields. The following tables, 9-5 through 9-7, describe the fields of
NCTYPE_FRAME_STRUCT for each value of FrameType.

Table 9-5. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_DATA (0)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_DATA (0)

This value indicates a CAN data frame.

ArbitrationId NCTYPE_CAN_ARBID Returns the arbitration ID of the received data
frame.

The NCTYPE_CAN_ARBID type is an
unsigned 32-bit integer that uses the bit mask
NC_FL_CAN_ARBID_XTD (0x20000000)
to indicate an extended ID. A standard ID
(11-bit) is specified by default.

The Network Interface receives data frames
based on the comparators and masks
configured in ncConfig.

Data Array of 8 NCTYPE_UINT8 Returns the data bytes of the frame.

Chapter 9 Frame API for C — ncRead

© National Instruments Corporation 9-43 NI-CAN Hardware and Software Manual

DataLength NCTYPE_UINT8 Returns the number of data bytes received in
the frame. This specifies the number of valid
data bytes in Data.

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp when the data
frame was received from the CAN network.

The timestamp data type
(NCTYPE_ABS_TIME) is a 64-bit unsigned
integer compatible with the Win32 FILETIME
type. This absolute time is kept in a
Coordinated Universal Time (UTC) format.
UTC time is loosely defined as the current date
and time of day in Greenwich England.
Microsoft defines its UTC time (FILETIME)
as a 64-bit counter of 100 ns intervals that have
elapsed since 12:00 a.m., January 1, 1601.

Since Timestamp is compatible with Win32
FILETIME, you can pass it into the Win32
FileTimeToLocalFileTime function to convert
it to your local time zone, then pass the
resulting local time to the Win32
FileTimeToSystemTime function to convert to
the Win32 SYSTEMTIME type.

SYSTEMTIME is a struct with fields for year,
month, day, and so on. For more information
on Win32 time types and functions, refer to
your Microsoft Win32 documentation.

Table 9-5. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_DATA (0) (Continued)

Field Name Data Type Description

Chapter 9 Frame API for C — ncRead

NI-CAN Hardware and Software Manual 9-44 ni.com

Table 9-6. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_COMM_ERR (2)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_COMM_ERR (2)

This value indicates a logged communication
warning or error as reported by the CAN
hardware.

This frame type occurs only when you set the
Log Comm Warnings attribute to TRUE. Refer
to ncConfig for details.

ArbitrationId NCTYPE_CAN_ARBID Indicates the type of communication problem:

8000000B hex:Comm. error: General
4000000B hex:Comm. warning: General
8001000B hex:Comm. error: Stuff
4001000B hex:Comm. warning: Stuff
8002000B hex:Comm. error: Format
4002000B hex:Comm. warning: Format
8003000B hex:Comm. error: No Ack
4003000B hex:Comm. warning: No Ack
8004000B hex:Comm. error: Tx 1 Rx 0
4004000B hex:Comm. warning: Tx 1 Rx 0
8005000B hex:Comm. error: Tx 0 Rx 1
4005000B hex:Comm. warning: Tx 0 Rx 1
8006000B hex:Comm. error: Bad CRC
4006000B hex:Comm. warning: Bad CRC
0000000B hex:Comm. errors/warnings cleared
4000000C hex:LS fault warning
0000000C hex:LS fault cleared

Data Array of 8
NCTYPE_UINT8

This field is not applicable to this frame type, and
should be ignored.

DataLength NCTYPE_UINT8 This field is not applicable to this frame type, and
should be ignored.

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp when the
communications problem occurred.

For information on the timestamp data type, refer
to Table 9-5.

Chapter 9 Frame API for C — ncRead

© National Instruments Corporation 9-45 NI-CAN Hardware and Software Manual

Error Active, Error Passive, and Bus Off States
When the CAN communication controller transfers into the error passive state, NI-CAN
returns the warning CanCommWarning from read functions.

When the transmit error counter of the CAN communication controller increments above 255,
the network interface transfers into the bus off state as dictated by the CAN protocol. The
network interface stops communication so that you can correct the defect in the network, such
as a malfunctioning cable or device. When bus off occurs, the NC_ST_ERROR and
NC_ST_STOPPED states are set in the NC_ATTR_STATE attribute of the CAN Network
Interface Object and all of its higher level CAN Objects. The background status attribute
(NC_ATTR_STATUS) is set with the CanWarnComm status code.

If no CAN devices are connected to the network interface port, and you attempt to transmit
a frame, the CanWarnComm status occurs. This warning occurs because the missing
acknowledgment bit increments the transmit error counter until the network interface reaches
the error passive state, but bus off state is never reached.

Because the error counters in the CAN controller reflect the status of the CAN network, and
not necessarily your CAN application, a given CanWarnComm status code will often remain
from one run of your application to the next. If you want to clear the CAN controller error
counters (and the CanWarnComm warning) completely when your application starts, use

Table 9-7. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_RTSI (3)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_RTSI (3)

Indicates when a RTSI input pulse occurred
relative to incoming CAN frames.

This frame type occurs only when you set the
RTSI Mode attribute to NC_RTSI_TIME_ON_IN
(refer to ncConfig for details).

ArbitrationId NCTYPE_CAN_ARBID Returns the special value 40000001 hex.

Data Array of 8
NCTYPE_UINT8

This field is not applicable to this frame type, and
should be ignored.

DataLength NCTYPE_UINT8 Returns the RTSI signal number detected.

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp when the RTSI
input occurred.

For information on the timestamp data type, refer
to Table 9-5.

Chapter 9 Frame API for C — ncRead

NI-CAN Hardware and Software Manual 9-46 ni.com

ncAction of NC_OP_RESET to reset the CAN controller, then use ncAction of
NC_OP_START to resume communication.

For more information about low-speed communication error handling, refer to the description
of the NC_ATTR_LOG_COMM_ERRS (Log Comm Warnings) attribute ID in the
ncConfig function description in this chapter.

CAN Object
The data type that you use with ncRead of the CAN Object is NCTYPE_CAN_DATA_TIMED.
When calling ncRead, you should pass sizeof(NCTYPE_CAN_DATA_TIMED) for the
DataSize parameter. Table 9-8 describes the fields of NCTYPE_CAN_DATA_TIMED.

.
Table 9-8. NCTYPE_CAN_DATA_TIMED Field Names

Field Name Data Type Description

Data Array of 8
NCTYPE_UINT

Data array returns 8 data bytes. The actual number of
valid data bytes depends on the CAN Object
configuration specified in ncConfig.

If the CAN Object Communication Type specifies
Transmit, data frames are transmitted, not received, so
Data always contains zero valid bytes. For this
Communication Type, the ncRead function has no
effect.

If the CAN Object Communication Type specifies
Receive, Data always contains Data Length valid
bytes, where Data Length was configured using
ncConfig.

Chapter 9 Frame API for C — ncRead

© National Instruments Corporation 9-47 NI-CAN Hardware and Software Manual

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp value. The timestamp
data type ((NCTYPE_ABS_TIME) is a 64-bit
unsigned integer compatible with the Win32
FILETIME type. This absolute time is kept in a
Coordinated Universal Time (UTC) format. UTC
time is loosely defined as the current date and time of
day in Greenwich England. Microsoft defines its UTC
time (FILETIME) as a 64-bit counter of 100 ns
intervals that have elapsed since 12:00 a.m.,
January 1, 1601.

Since Timestamp is compatible with Win32
FILETIME, you can pass it into the Win32
FileTimeToLocalFileTime function to convert it to
your local time zone, then pass the resulting local time
to the Win32 FileTimeToSystemTime function to
convert to the Win32 SYSTEMTIME type.
SYSTEMTIME is a struct with fields for year, month,
day, and so on. For more information on Win32 time
types and functions, refer to your Microsoft Win32
documentation.

Table 9-8. NCTYPE_CAN_DATA_TIMED Field Names (Continued)

Field Name Data Type Description

Chapter 9 Frame API for C — ncReadMult

NI-CAN Hardware and Software Manual 9-48 ni.com

ncReadMult

Purpose
Read multiple frames from an object.

Format
NCTYPE_STATUS ncReadMult(

NCTYPE_OBJH ObjHandle,
NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr,
NCTYPE_UINT32_P ActualDataSize);

Input
ObjHandle Object handle.
DataSize The size of the data buffer in bytes.
DataPtr Points to data buffer in which the data returned.

Output
ActualDataSize The number of bytes actually returned.

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
This function returns multiple frames from the read queue of the object specified by
ObjHandle. When used with the Network Interface, ncReadMult is useful in analyzer
applications where data frames need to be acquired at a high speed and stored for analysis in
the future. For single frame and most recent data frame acquisition, you should use ncRead.

DataPtr points to an array of either NCTYPE_CAN_STRUCT or NCTYPE_CAN_DATA_TIMED.
DataSize indicates the size of the array pointed to by DataPtr (in bytes). This size is
specified in bytes in order to verify that the proper data type and alignment is used. When
ncReadMult returns, the number of bytes copied into DataPtr is provided in
ActualDataSize.

Because NI-CAN handles the read queue in the background, this function does not wait
for new data to arrive. To ensure that new data is available before calling ncReadMult,
first wait for the NC_ST_READ_MULT state. Refer to NC_ST_READ_MULT (00000008 hex)

Chapter 9 Frame API for C — ncReadMult

© National Instruments Corporation 9-49 NI-CAN Hardware and Software Manual

in the ncCreateNotification function description in this chapter for more information on
this state.

Unlike the ncRead function, the ncReadMult function does not return the
CanWarnOldData warning to indicate zero frames. If there is no new data, the function
returns with an ActualDataSize of zero.

The description for CanErrOverflowRead and the host data types is identical to that of
ncRead with the exception of CanWarnOldData, described above.

Refer to the ncRead function description for more details on the structures used with
ncReadMult.

Chapter 9 Frame API for C — ncReset

NI-CAN Hardware and Software Manual 9-50 ni.com

ncReset

Purpose
Reset the CAN card.

Format
NCTYPE_STATUS_NCFUNC_ncReset(

NCTYPE_STRING ObjName,
NCTYPE_UINT32 Param);

Input
ObjName ASCII name of the interface (card) to reset
Param Reserved for future use (set to 0)

Output

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
This function completely resets the CAN card and ensures that all handles for that card are
closed.

ObjName is the name of the CAN Network Interface Object that indicates the card to reset.
This name uses the same “CANx” syntax as ncConfig, but the reset applies to the entire
CAN card. For example, if a 2-port card contains “CAN0” and “CAN1”, calling ncReset
with ObjName “CAN1” resets all hardware/software associated with both “CAN0” and
“CAN1”.

If an NI-CAN application is terminated prior to closing all handles, the CanErrNotStopped
or CanErrAlreadyOpen error might occur when the application is restarted. By making this
the first NI-CAN function called in your application (preceding all ncConfig), you can avoid
problems related to improper termination.

You can only use the ncReset function if you plan to run a single NI-CAN application. If you
run more than one NI-CAN application, each with ncReset, the second ncReset call will
close all handles for the first application. You should only use the ncReset function as a
temporary measure. After you update your application so that it successfully closes NI-CAN
handles on termination, it should no longer be used.

Chapter 9 Frame API for C — ncSetAttribute

© National Instruments Corporation 9-51 NI-CAN Hardware and Software Manual

ncSetAttribute

Purpose
Set the value of an object attribute.

Format
NCTYPE_STATUS ncSetAttribute(

NCTYPE_OBJH ObjHandle,
NCTYPE_ATTRID AttrId,
NCTYPE_UINT32 AttrSize,
NCTYPE_ANY_P AttrPtr)

Input
ObjHandle Object handle.
AttrId Identifier of the attribute to set.
AttrSize Size of the attribute in bytes.
AttrPtr New attribute value. You provide the attribute value using the

pointer AttrPtr.

Output

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncSetAttribute sets the value of the attribute specified by AttrId in the object specified
by ObjHandle.

AttrPtr points to the variable that holds the attribute value. Its type is undefined so that you
can use the appropriate host data type for AttrId. AttrSize indicates the size of variable
pointed to by AttrPtr. AttrSize is typically 4, and AttrPtr references a 32-bit unsigned
integer.

For a listing of valid attributes for the Network Interface and CAN Object, refer to ncConfig.
Unless stated otherwise, communication must be stopped prior to changing an attribute with
ncSetAttribute. While the Network Interface and all CAN Objects are stopped, you can set
any of the AttrId mentioned in ncConfig using ncSetAttribute.

Chapter 9 Frame API for C — ncStatusToString

NI-CAN Hardware and Software Manual 9-52 ni.com

ncStatusToString

Purpose
Convert status code into a descriptive string.

Format
void ncStatusToString(

NCTYPE_STATUS Status,
NCTYPE_UINT32 SizeofString,
NCTYPE_STRING String)

Input
Status Nonzero status code returned from NI-CAN function.
SizeofString Size of String buffer (in bytes).

Output
String ASCII string that describes Status.

Description
When the status code returned from an NI-CAN function is nonzero, an error or warning is
indicated. This function is used to obtain a description of the error/warning for debugging
purposes.

If you want to avoid displaying error messages while debugging your application, you can use
the Explain.exe utility. This console application is located in the NI-CAN installation
folder, which is typically \Program Files\National Instruments\NI-CAN. You enter
an NI-CAN status code in the command line, Explain 0XBFF62201 for example, and the
utility displays the description.

The return code is passed into the Status parameter. The SizeofString parameter
indicates the number of bytes available in String for the description. The description will
be truncated to size SizeofString if needed, but a size of 300 characters is large enough to
hold any description. The text returned in String is null-terminated, so it can be used with
ANSI C functions such as printf.

For applications written in C or C++, each NI-CAN function returns a status code as a signed
32-bit integer. Table 9-9 summarizes the NI-CAN use of this status.

Chapter 9 Frame API for C — ncStatusToString

© National Instruments Corporation 9-53 NI-CAN Hardware and Software Manual

Your application code should check the status returned from every NI-CAN function. If an
error is detected, you should close all NI-CAN handles, then exit the application. If a warning
is detected, you can display a message for debugging purposes, or simply ignore the warning.

The following piece of code shows an example of handling NI-CAN status during application
debugging.

status= ncOpenObject ("CAN0", &MyObjHandle);

PrintStat (status, "ncOpen CAN0");

where the function PrintStat has been defined at the top of the program as:

void PrintStat(NCTYPE_STATUS status, char *source)
{

char statusString[300];

if(status !=0)
{

ncStatusToString(status, sizeof(statusString),

statusString);

printf("\n%s\nSource = %s\n", statusString,

source);

if (status < 0)

{
ncCloseObject(MyObjHandle);
exit(1);

}

}

}

In some situations, you may want to check for specific errors in your code. For example, when
ncWaitForState times out, you may want to continue communication, rather than exit the
application. To check for specific errors, use the constants defined in nican.h. These
constants have the same names as described in this manual. For example, to check for a
function timeout, use:

if (status == CanErrFunctionTimeout)

Table 9-9. NI-CAN Status Codes

Status Code Meaning

Negative Error—Function did not perform expected behavior.

Positive Warning—Function performed as expected, but a condition arose that
may require your attention.

Zero Success—Function completed successfully.

Chapter 9 Frame API for C — ncWaitForState

NI-CAN Hardware and Software Manual 9-54 ni.com

ncWaitForState

Purpose
Wait for one or more states to occur in an object.

Format
NCTYPE_STATUS ncWaitForState(

NCTYPE_OBJH ObjHandle,
NCTYPE_STATE DesiredState,
NCTYPE_UINT32 Timeout,
NCTYPE_STATE_P StatePtr)

Input
ObjHandle Object handle.
DesiredState States to wait for.
Timeout Length of time to wait in milliseconds.

Output
StatePtr Current state of object when desired states occur. The state

is returned to you using the pointer StatePtr.

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
You use ncWaitforState to wait for one or more states to occur in the object specified by
ObjHandle.

This function waits up to Timeout for one of the bits set in DesiredState to become set in
the attribute NC_ATTR_STATE. You can use the special Timeout value
NC_DURATION_INFINITE (FFFFFFFF hex) to wait indefinitely.

DesiredState specifies a bit mask of states for which the wait should return. You can use a
single state alone, or you can OR them together.

NC_ST_READ_AVAIL (00000001 hex)

At least one frame is available, which you can obtain using an
appropriate read function.

Chapter 9 Frame API for C — ncWaitForState

© National Instruments Corporation 9-55 NI-CAN Hardware and Software Manual

The state is set whenever a frame arrives for the object. The state is
cleared when the read queue is empty.

NC_ST_WRITE_SUCCESS (00000002 hex)

All frames provided via write function have been successfully
transmitted onto the network. Successful transmit means that the frame
won arbitration, and was acknowledged by a remote device.

The state is set when the last frame in the write queue is transmitted
successfully. The state is cleared when a write function is called.

For CAN Objects, Write Success does not always mean that
transmission has stopped. For example, if a CAN Object is configured
for Transmit Data Periodically, Write Success occurs when the write
queue has been emptied, but periodic transmit of the last frame
continues.

When communication starts, the NC_ST_WRITE_SUCCESS state is true
by default.

NC_ST_READ_MULT (00000008 hex)

A specified number of frames are available, which you can obtain
using ncReadMult. The number of frames is one half the Read
Queue Length by default, but you can change it using the
ReadMult Size for Notification attribute of
ncSetAttribute.

The state is set whenever the specified number of frames are stored in
the read queue of the object. The state is cleared when you call the read
function, and less than the specified number of frames exist in the read
queue.

When the states in DesiredState are detected, the function returns the current value of the
NC_ATTR_STATE attribute. If an error occurs, the state returned is zero.

While waiting for the desired states, ncWaitForState suspends the current thread
execution. Other Win32 threads in your application can still execute.

If you want to allow other code in your application to execute while waiting for NI-CAN
states, refer to the ncCreateNotification function.

Chapter 9 Frame API for C — ncWrite

NI-CAN Hardware and Software Manual 9-56 ni.com

ncWrite

Purpose
Write a single frame to an object.

Format
NCTYPE_STATUS ncWrite(

NCTYPE_OBJH ObjHandle,
NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr)

Input
ObjHandle Object handle.
DataSize Size of the data in bytes.
DataPtr Data written to the object. You provide the data using the pointer

DataPtr.

Output

Return Value
Status of the function call, returned as a signed 32-bit integer. Zero means the function
executed successfully. Negative specifies an error, meaning the function did not perform
expected behavior. Positive specifies a warning, meaning the function performed as expected,
but a condition arose that might require your attention. For more information, refer to
ncStatusToString.

Description
ncWrite writes a single frame to the object specified by ObjHandle.

DataPtr points to the variable from which the data is written. Its type is undefined so that
you can use the appropriate host data type. DataSize indicates the size of variable pointed
to by DataPtr, and is used to verify that the size you provide is compatible with the
configured write size for the object.

You use ncWrite to place data into the write queue of an object. Because NI-CAN handles
the write queue in the background, this function does not wait for data to be transmitted on
the network. To make sure that the data is transmitted successfully after calling ncWrite,
wait for the NC_ST_WRITE_SUCCESS state. The NC_ST_WRITE_SUCCESS state transitions
from false to true when the write queue is empty, and NI-CAN has successfully transmitted
the last data item onto the network. The NC_ST_WRITE_SUCCESS state remains true until you
write another data item into the write queue.

When communication starts, the NC_ST_WRITE_SUCCESS state is true by default.

Chapter 9 Frame API for C — ncWrite

© National Instruments Corporation 9-57 NI-CAN Hardware and Software Manual

When you configure an object to transmit data onto the network periodically, it obtains data
from the object write queue each period. If the write queue is empty, NI-CAN transmits the
data of the previous period again. NI-CAN transmits this data repetitively until the next call
to ncWrite.

If an object write queue is full, a call to ncWrite returns the CanErrOverflowWrite error
and NI-CAN discards the data you provide. One way to avoid this overflow error is to set the
write queue length to zero. When ncWrite is called for a zero length queue, the data item
you provide with ncWrite simply overwrites the previous data item without indicating an
overflow. A zero length write queue is often useful when an object is configured to transmit
data onto the network periodically, and you simply want to transmit the most recent data value
each period. It is also useful when you plan to always wait for NC_ST_WRITE_SUCCESS after
every call to ncWrite. You can use the NC_ATTR_WRITE_Q_LEN attribute to configure the
write queue length.

For information on the proper data type to use with DataPtr, refer to the CAN Network
Interface Object and CAN Object descriptions below.

CAN Network Interface Object
The data type that you use with ncWrite of the Network Interface is NCTYPE_CAN_FRAME.
When calling ncWrite, you should pass sizeof(NCTYPE_CAN_FRAME) for the DataSize
parameter.

Within the NCTYPE_CAN_FRAME structure, the FrameType field determines the meaning of
all other fields. Tables 9-10 and 9-11 describe the fields of NCTYPE_CAN_FRAME for each
value of FrameType.

Table 9-10. NCTYPE_CAN_FRAME Fields for FrameType NC_FRMTYPE_DATA (0)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_DATA (0)

Transmit a CAN data frame.

ArbitrationId NCTYPE_CAN_ARBID Specifies the arbitration ID of the frame to transmit.

The NCTYPE_CAN_ARBID type is an unsigned
32-bit integer that uses the bit mask
NC_FL_CAN_ARBID_XTD (0x20000000) to
indicate an extended ID. A standard ID (11-bit) is
specified by default. In order to specify an extended
ID (29-bit), OR in the bit mask
NC_FL_CAN_ARBID_XTD.

Chapter 9 Frame API for C — ncWrite

NI-CAN Hardware and Software Manual 9-58 ni.com

Data Array of 8
NCTYPE_UINT8

Specifies the data bytes of the frame.

DataLength NCTYPE_UINT8 Specifies the number of data bytes to transmit.
This number of valid data bytes must be provided
in Data.

Table 9-11. NCTYPE_CAN_FRAME fields for FrameType NC_FRMTYPE_REMOTE (1)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_REMOTE (1)

Transmit a CAN remote frame.

ArbitrationId NCTYPE_CAN_ARBID Specifies the arbitration ID of the frame to transmit.

The NCTYPE_CAN_ARBID type is an unsigned
32-bit integer that uses the bit mask
NC_FL_CAN_ARBID_XTD (0x20000000) to
indicate an extended ID. A standard ID (11-bit) is
specified by default. In order to specify an extended
ID (29-bit), OR in the bit mask
NC_FL_CAN_ARBID_XTD.

Data Array of 8
NCTYPE_UINT8

Remote frames do not contain data, so this array is
empty.

DataLength NCTYPE_UINT8 Specifies the Data Length Code to transmit in the
remote frame.

Table 9-10. NCTYPE_CAN_FRAME Fields for FrameType NC_FRMTYPE_DATA (0) (Continued)

Field Name Data Type Description

Chapter 9 Frame API for C — ncWrite

© National Instruments Corporation 9-59 NI-CAN Hardware and Software Manual

CAN Object
The data type that you use with ncWrite of the CAN Object is NCTYPE_CAN_DATA. When
calling ncWrite, you should pass sizeof(NCTYPE_CAN_DATA) for the DataSize parameter.
Table 9-12 describes the fields of NCTYPE_CAN_DATA.

Table 9-12. NCTYPE_CAN_DATA Field Name

Field Name Data Type Description

Data Array of 8
NCTYPE_UINT8

Data array specifies the data bytes (8 maximum).
The actual number of valid data bytes depends on the
CAN Object configuration specified in ncConfig.

If the CAN Object’s Communication Type
specifies Receive, data frames are received, not
transmitted, so Data always contains zero valid
bytes. For this Communication Type, the ncWrite
function is used solely for transmission of a remote
frame.

If the CAN Object’s Communication Type
specifies Transmit, Data must always contain Data
Length valid bytes, where Data Length was
configured using ncConfig.

© National Instruments Corporation A-1 NI-CAN Hardware and Software Manual

A
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems with the NI-CAN
software and answers some common questions.

Troubleshooting with the Measurement & Automation
Explorer (MAX)

MAX contains configuration information for all CAN hardware installed
on your system. To start MAX, double-click on the Measurement &
Automation icon on your desktop. Your NI-CAN cards are listed in the left
pane (Configuration) under Devices and Interfaces.

You can test your NI-CAN cards by choosing Tools»NI-CAN»Test all
Local NI-CAN Cards from the menu, or you can right-click on an
NI-CAN card and choose Self Test. If the Self Test fails, refer to the
Troubleshooting Self Test Failures section of this appendix.

If there is no National Instruments CAN Interfaces item, and you have
an NI-CAN card installed, refer to the Missing NI-CAN Card section of this
appendix.

Missing NI-CAN Card
If you have an NI-CAN card installed, but no NI-CAN card appears in the
configuration section of MAX under Devices and Interfaces, you need to
search for hardware changes by pressing the <F5> key or choosing the
Refresh option from the View menu in MAX.

If the NI-CAN card still doesn’t show up, you may have a resource conflict
in the Windows Device Manager. Refer to the documentation for your
Windows operating system for instructions on how to resolve the problem
using the Device Manager.

Appendix A Troubleshooting and Common Questions

NI-CAN Hardware and Software Manual A-2 ni.com

Troubleshooting Self Test Failures
The following topics explain common error messages generated by the
NI-CAN Self Test.

Application In Use
This error occurs if you are running an application that is using the NI-CAN
card. The self test aborts in order to avoid adversely affecting your
application. Before running the self test, exit all applications that use
NI-CAN. If you are using LabVIEW, you may need to exit LabVIEW in
order to unload the NI-CAN driver.

Memory Resource Conflict
This error occurs if the memory resource assigned to a CAN card conflicts
with the memory resources being used by other devices in the system.
Resource conflicts typically occur when your system contains legacy
boards that use resources not properly reserved with the Device Manager.
If a resource conflict exists, write down the memory resource that caused
the conflict and refer to the documentation for your Windows operating
system for instructions on how to use the Device Manager to reserve
memory resources for legacy boards. After the conflict has been resolved,
run the NI-CAN Self Test again.

Interrupt Resource Conflict
This error occurs if the interrupt resource assigned to a CAN card conflicts
with the interrupt resources being used by other devices in the system.
Resource conflicts typically occur when your system contains legacy
boards that use resources not properly reserved with the Device Manager.
If a resource conflict exists, write down the interrupt resource that caused
the conflict and refer to the documentation for your Windows operating
system for instructions on how to use the Device Manager to reserve
interrupt resources for legacy boards. After the conflict has been resolved,
run the NI-CAN Self Test again.

NI-CAN Software Problem Encountered
This error occurs if the NI-CAN Self Test detects that it is unable to
communicate correctly with the CAN hardware using the installed
NI-CAN software. If you get this error, shut down your computer, restart it,
and run the NI-CAN Self Test again.

If the error continues after restart, uninstall NI-CAN and then reinstall.

Appendix A Troubleshooting and Common Questions

© National Instruments Corporation A-3 NI-CAN Hardware and Software Manual

NI-CAN Hardware Problem Encountered
This error occurs if the NI-CAN Self Test detects a defect in the CAN
hardware. If you get this error, write down the numeric code shown with the
error, and contact National Instruments.

Common Questions
How can I determine which version of the NI-CAN software is installed
on my system?

Within MAX, select Help Topics»NI-CAN within the Help menu. The
version is displayed at the top of the help text. The NI-CAN entry provides
version information.

How many CAN cards can I configure for use with my NI-CAN
software?

The NI-CAN software can be configured to communicate with up to
32 NI-CAN cards on all supported operating systems.

Are interrupts required for the NI-CAN cards?

Yes, one interrupt per card is required. However, PCI and PXI CAN cards
can share interrupts with other devices in the system.

How can I use non-standard baud rates?

Open MAX and right-click on the port of the baud rate you want to change.
Choose Properties and then press the Advanced button.

Can I use the Channel API and the Frame API at the same time?

Yes, you can use the Channel API and the Frame API at the same time, but
only on different ports. For example, you can use the Frame API on port 1
of a 2-port NI-CAN card and the Channel API on port 2 of that card.

Can high-speed NI-CAN cards and low-speed NI-CAN cards be used
on the same network?

No. This is not possible due to different termination requirements of
high-speed and low-speed CAN devices. Refer to Appendix B, Cabling
Requirements for High-Speed CAN, and Appendix C, Cabling
Requirements for Low-Speed CAN, for more information.

Appendix A Troubleshooting and Common Questions

NI-CAN Hardware and Software Manual A-4 ni.com

Does the NI-CAN card provide power to the CAN bus?

No. In order to provide power to the CAN bus, you need an external power
supply.

Can I use multiple PCMCIA cards in one computer?

Yes, but make sure there are enough free resources available. Unlike PCI or
PXI CAN cards, PCMCIA CAN cards cannot share resources, such as
IRQs, with other devices.

I have problems with my NI PCMCIA CAN card under Windows NT.
How can I resolve them?

Windows NT offers minimal support for plug and play and there are several
things to consider.

Since Windows NT does not automatically assign resources to PCMCIA
cards, the PCMCIA CAN cards are configured to use default values for the
IRQ and the memory range. If those resources are already in use by other
devices, it might be necessary to manually change those values.

To do so, right-click on the PCMCIA CAN card in MAX and choose
Properties. Assign resource values that do not conflict with other device
resources for either the Interrupt Request (IRQ) or the Memory Range.

Initially, all NI PCMCIA CAN cards will have the same resources assigned.
If you have more than one PCMCIA CAN card installed, the Self Test will
fail. You must change the resources of one of the cards manually.

Windows NT does not allow more than one PCMCIA card of the same type
installed. Thus, you cannot use two NI PCMCIA CAN/2 cards in the same
system. You can however use an NI PCMCIA CAN card and an
NI PCMCIA CAN/2 card together.

Why can’t I communicate with other devices on the CAN bus, even
though the Self Test in MAX passed?

Check the settings for the Power Source Jumper.

The position EXT is required for low speed cards; high-speed cards should
have it set to INT. Refer to Appendix B, Cabling Requirements for
High-Speed CAN, and Appendix C, Cabling Requirements for Low-Speed
CAN, for more information.

Appendix A Troubleshooting and Common Questions

© National Instruments Corporation A-5 NI-CAN Hardware and Software Manual

If the jumper settings are correct, your network may have a cabling or
termination problem. Refer again to Appendix B, Cabling Requirements
for High-Speed CAN, and Appendix C, Cabling Requirements for
Low-Speed CAN, for more information.

Why are some components left after the NI-CAN software is
uninstalled?

The uninstall program removes only items that the installation program
installed. If you add anything to a directory that was created by the
installation program, the uninstall program does not delete that directory,
because the directory is not empty after the uninstallation. You must
remove any remaining components yourself.

© National Instruments Corporation B-1 NI-CAN Hardware and Software Manual

B
Cabling Requirements for
High-Speed CAN

This section describes the cabling requirements for high-speed CAN
hardware.

Cables should be constructed to meet these requirements, as well as the
requirements of the other CAN or DeviceNet devices in the network.

Connector Pinouts
Depending on the type of CAN interface you are installing, the CAN
hardware has DB-9 D-Sub connectors(s), or Combicon-style pluggable
screw terminal connector(s), or both.

The 9-pin D-Sub follows the pinout recommended by CiA DS 102.
Figure B-1 shows the pinout for this connector.

Figure B-1. Pinout for 9-Pin D-Sub Connector

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Appendix B Cabling Requirements for High-Speed CAN

NI-CAN Hardware and Software Manual B-2 ni.com

The 5-pin Combicon-style pluggable screw terminal follows the pinout
required by the DeviceNet specification. Figure B-2 shows the pinout
for this connector.

Figure B-2. Pinout for 5-Pin Combicon-Style Pluggable Screw Terminal

CAN_H and CAN_L are signal lines that carry the data on the CAN
network. These signals should be connected using twisted-pair cable.

The V+ and V– pins are used to supply bus power to the CAN physical
layer if external power is required for the CAN physical layer. If internal
power for the CAN physical layer is used, the V– pin serves as the reference
ground for CAN_H and CAN_L. Refer to the next section, Power Supply
Information for the High-Speed CAN Ports, for more information.

1 V+
2 CAN_H

3 Shield
4 CAN_L

5 V–

1
2

3
5

4

Appendix B Cabling Requirements for High-Speed CAN

© National Instruments Corporation B-3 NI-CAN Hardware and Software Manual

Figure B-3 shows the end of a PCMCIA-CAN cable. The arrow points
to pin 1 of the 5-pin screw terminal block. All of the signals on the 5-pin
Combicon-style pluggable screw terminal are connected directly to the
corresponding pins on the 9-pin D-Sub.

Figure B-3. PCMCIA-CAN Cable

J2

J1

CAN (Internal Pwr), PORT 1

V-

C_L
SH

C_H
V+

Appendix B Cabling Requirements for High-Speed CAN

NI-CAN Hardware and Software Manual B-4 ni.com

Power Supply Information for the High-Speed CAN Ports
For the PCI-CAN and PXI-846x series cards, the power source for the CAN
physical layer is configured with a jumper. The location of this jumper is
shown in Figure B-4.

Figure B-4. Parts Locator Diagram

1 Power Supply Jumper J3
2 Serial Number

3 Assembly Number
4 Power Supply Jumper J4

5 Product Name

3

5 4

21

Appendix B Cabling Requirements for High-Speed CAN

© National Instruments Corporation B-5 NI-CAN Hardware and Software Manual

For the PCI-CAN and port one of the PCI-CAN/2 power is configured with
jumper J6. For port two of the PCI-CAN/2, power is configured with
jumper J5. These jumpers are shown in Figure B-5.

Figure B-5. PCI-CAN/2 Parts Locator Diagram

1 Power Supply Jumper J6
2 Product Name

3 Serial Number
4 Assembly Number

5 Power Supply Jumper J5

3

5 4

1 2

Appendix B Cabling Requirements for High-Speed CAN

NI-CAN Hardware and Software Manual B-6 ni.com

For port one of the PXI-8461, power is configured with jumper J5. For port
two of the PXI-8461, power is configured with jumper J6. The location of
these jumper is shown in Figure B-6.

Figure B-6. PXI-8461 Parts Locator Diagram

Connecting pins 1 and 2 of a jumper configures the CAN physical layer to
be powered externally (from the bus cable power). In this configuration, the
power must be supplied on the V+ and V– pins on the port connector.

Connecting pins 2 and 3 of a jumper configures the CAN physical layer to
be powered internally (from the card). In this configuration, the V– signal
serves as the reference ground for the isolated signals.

1 Power Supply Jumper J6
2 Power Supply Jumper J5

3 Assembly Number
4 Product Name

5 Serial Number

2

1

3 4

5

Appendix B Cabling Requirements for High-Speed CAN

© National Instruments Corporation B-7 NI-CAN Hardware and Software Manual

Figure B-7 shows how to configure your jumpers for internal or external
power supplies.

Figure B-7. Power Source Jumpers

The CAN physical layer is still isolated regardless of the power source
chosen.

The PCMCIA-CAN series cards are available with two types of cable.
The DeviceNet (bus powered) cable requires that the CAN physical layer
be powered from the bus cable power.

The internal-powered cable supplies power to the CAN physical layer from
the host computer. The V+ pin is not connected to any internal signals, but
the corresponding pins on the 9-pin D-Sub and the 5 pin Combicon-style
connectors are still connected. The V– pins serves as the reference ground
for the isolated signals.

The CAN physical layer is isolated from the computer in both types
of cable.

Bus Power Supply Requirements
If the CAN physical layer is powered from a bus power supply, the power
supply should be a DC power supply with an output of 10 to 30 V. The
power requirements for the CAN ports for Bus-Powered configurations are
shown in Table B-1. You should take these requirements into account when
determining requirements of the bus power supply for the system.

Table B-1. Power Requirements for the CAN Physical Layer for
Bus-Powered Versions

Characteristic Specification

Voltage requirement V+ 10–30 VDC

Current requirement 40 mA typical
100 mA maximum

INT EXT

a. Internal Power Mode

INT EXT

b. External Power Mode
(Device Net)

123 123

Appendix B Cabling Requirements for High-Speed CAN

NI-CAN Hardware and Software Manual B-8 ni.com

Cable Specifications
Cables should meet the physical medium requirements specified in
ISO 11898, shown in Table B-2.

Belden cable (3084A) meets all of those requirements, and should be
suitable for most applications.

Cable Lengths
The allowable cable length is affected by the characteristics of the
cabling and the desired bit transmission rates. Detailed cable length
recommendations can be found in the ISO 11898, CiA DS 102, and
DeviceNet specifications.

ISO 11898 specifies 40 m total cable length with a maximum stub length
of 0.3 m for a bit rate of 1 Mb/s. The ISO 11898 specification says that
significantly longer cable lengths may be allowed at lower bit rates, but
each node should be analyzed for signal integrity problems.

Table B-3 lists the DeviceNet cable length specifications.

Table B-2. ISO 11898 Specifications for Characteristics of a CAN_H and
CAN_L Pair of Wires

Characteristic Value

Impedance 108 Ω minimum, 120 Ω nominal,
132 Ω maximum

Length-related resistance 70 mΩ/m nominal

Specific line delay 5 ns/m nominal

Table B-3. DeviceNet Cable Length Specifications

Bit Rate Thick Cable Thin Cable

500 kb/s 100 m 100 m

250 kb/s 200 m 100 m

100 kb/s 500 m 100 m

Appendix B Cabling Requirements for High-Speed CAN

© National Instruments Corporation B-9 NI-CAN Hardware and Software Manual

Number of Devices
The maximum number of devices depends on the electrical characteristics
of the devices on the network. If all of the devices meet the requirements
of ISO 11898, at least 30 devices may be connected to the bus. Higher
numbers of devices may be connected if the electrical characteristics of
the devices do not degrade signal quality below ISO 11898 signal level
specifications. If all of the devices on the network meet the DeviceNet
specifications, 64 devices may be connected to the network.

Cable Termination
The pair of signal wires (CAN_H and CAN_L) constitutes a transmission
line. If the transmission line is not terminated, each signal change on the
line causes reflections that may cause communication failures.

Because communication flows both ways on the CAN bus, CAN requires
that both ends of the cable be terminated. However, this requirement does
not mean that every device should have a termination resistor. If multiple
devices are placed along the cable, only the devices on the ends of the cable
should have termination resistors. Refer to Figure B-8 for an example of
where termination resistors should be placed in a system with more than
two devices.

Figure B-8. Termination Resistor Placement

The termination resistors on a cable should match the nominal impedance
of the cable. ISO 11898 requires a cable with a nominal impedance of
120 Ω; therefore, a 120 Ω resistor should be used at each end of the cable.
Each termination resistor should be capable of dissipating 0.25 W of power.

CAN
Device

CAN
Device

CAN
Device

CAN
Device

CAN_L

CAN_H

120 Ω 120 Ω

Appendix B Cabling Requirements for High-Speed CAN

NI-CAN Hardware and Software Manual B-10 ni.com

Cabling Example
Figure B-9 shows an example of a cable to connect two CAN devices.
For the internal power configuration, no V+ connection is required.

Figure B-9. Cabling Example

9-Pin
D-Sub

9-Pin
D-Sub

CAN_H

CAN_L

V+

V+

V–

V–

5-Pin
Combicon

5-Pin
Combicon

Pin 7Pin 4 Pin 7 Pin 4

Pin 2 Pin 2

Pin 5 Pin 3

Pin 9 Pin 5

Pin 3 Pin 1

Pin 2Pin 2

Pin 5Pin 3

Pin 9Pin 5

Pin 3Pin 1

Power
Connector

SHIELD

120 Ω 120 Ω

© National Instruments Corporation C-1 NI-CAN Hardware and Software Manual

C
Cabling Requirements for
Low-Speed CAN

This appendix describes the cabling requirements for the low-speed CAN
hardware.

Cables should be constructed to meet these requirements, as well as the
requirements of the other CAN devices in the network.

Connector Pinouts
The low-speed CAN hardware has DB-9 D-Sub connector(s). The 9-pin
D-Sub follows the pinout recommended by CiA DS 102. Figure C-1 shows
the pinout for this connector.

Figure C-1. Pinout for 9-Pin D-Sub Connector

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Appendix C Cabling Requirements for Low-Speed CAN

NI-CAN Hardware and Software Manual C-2 ni.com

CAN_H and CAN_L are signal lines that carry the data on the CAN
network. These signals should be connected using twisted-pair cable.

The V+ and V– pins are used to supply bus power to the CAN physical
layer if external power is required for the CAN physical layer. If internal
power for the CAN physical layer is used, the V– pin serves as the reference
ground for CAN_H and CAN_L. Refer to the next section, Power Supply
Information for the Low-Speed CAN Ports, for more information.

Figure C-2 shows the end of a PCMCIA-CAN/LS cable. The arrow points
to pin 1 of the 7-pin screw terminal block. All of the signals on the 7-pin
pluggable screw terminal, except RTL and RTH, are connected directly to
the corresponding pins on the 9-pin D-Sub.

Figure C-2. PCMCIA-CAN/LS Cable

J2

J1

PCMCIA-CAN/LS, Port 1

RTL
C_L

V-
SH

V+
C_H

RTH

Appendix C Cabling Requirements for Low-Speed CAN

© National Instruments Corporation C-3 NI-CAN Hardware and Software Manual

Power Supply Information for the Low-Speed CAN Ports
For the PCI-CAN/LS and port one of the PCI-CAN/LS2, power is
configured with jumper J6. For port two of the PCI-CAN/LS2, power
is configured with jumper J5. These jumpers are shown in Figure C-3.

Figure C-3. PCI-CAN/LS2 Parts Locator Diagram

1 Power Supply Jumper J6
2 Product Name

3 Serial Number
4 Assembly Number

5 Power Supply Jumper J5
6 Termination Resistor Sockets

3

5 4

1 2

6

Appendix C Cabling Requirements for Low-Speed CAN

NI-CAN Hardware and Software Manual C-4 ni.com

For port one of the PXI-8460, power is configured with jumper J5. For port
two of the PXI-8460, power is configured with jumper J6. These jumpers
are shown in Figure C-4.

Figure C-4. PXI-8460 Parts Locator Diagram

Connecting pins 1 and 2 of a jumper configures the CAN physical layer to
be powered externally (from the bus cable power). In this configuration, the
power must be supplied on the V+ and V– pins on the port connector.

Connecting pins 2 and 3 of a jumper configures the CAN physical layer to
be powered internally (from the card). In this configuration, the V– signal
serves as the reference ground for the isolated signals. Even if the CAN
physical layer is powered internally, the fault-tolerant CAN transceiver still
requires bus power to be supplied in order for it to monitor the power supply
(battery) voltage.

1 Power Supply Jumper J6
2 Power Supply Jumper J5

3 Assembly Number
4 Product Name

5 Serial Number
6 Termination Resistor Sockets

2

1

3 4

56

Appendix C Cabling Requirements for Low-Speed CAN

© National Instruments Corporation C-5 NI-CAN Hardware and Software Manual

Figure C-5 shows how to configure your jumpers for internal or external
power supplies.

Figure C-5. Power Source Jumpers

The CAN physical layer is still isolated regardless of the power source
chosen.

Bus Power Supply Requirements
If the CAN physical layer is powered from a bus power supply, the
power supply should be a DC power supply with an output of 8 to 27 V. The
power requirements for the CAN ports for Bus-Powered configurations are
shown in Table C-1. You should take these requirements into account when
determining requirements of the bus power supply for the system.

Table C-1. Power Requirements for the Low-Speed CAN Physical Layer for
Bus-Powered Versions

Characteristic Specification

Voltage requirement V+ 8–27 VDC

Current requirement 40 mA typical

100 mA maximum

a. Internal Power Mode b. External Power Mode

INT EXT
123

INT EXT
123

Appendix C Cabling Requirements for Low-Speed CAN

NI-CAN Hardware and Software Manual C-6 ni.com

Cable Specifications
Cables should meet the physical medium requirements shown in Table C-2.

Belden cable (3084A) meets all of those requirements, and should be
suitable for most applications.

Number of Devices
The maximum number of devices depends on the electrical characteristics
of the devices on the network. If all of the devices meet the requirements of
typical low-speed, fault-tolerant CAN, at least 20 devices may be
connected to the bus. Higher numbers of devices may be connected if the
electrical characteristics of the devices do not degrade signal quality below
low-speed, fault-tolerant signal level specifications.

Table C-2. Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires

Characteristic Value

Length-related resistance 90 mΩ/m nominal

Length-related capacitance: CAN_L and
ground, CAN_H and ground, CAN_L
and CAN_H

30 pF/m nominal

Appendix C Cabling Requirements for Low-Speed CAN

© National Instruments Corporation C-7 NI-CAN Hardware and Software Manual

Low-Speed Termination
Every device on the low-speed CAN network requires a termination
resistor for each CAN data line: RRTH for CAN_H and RRTL for CAN_L.
Figure C-6 shows termination resistor placement in a low-speed CAN
network.

Figure C-6. Termination Resistor Placement for Low-Speed CAN

The following sections explain how to determine the correct resistor
values for your low-speed CAN card, and how to replace those resistors,
if necessary.

Determining the Necessary Termination Resistance for Your Board
Unlike high-speed CAN, low-speed CAN requires termination at the
low-speed CAN transceiver instead of on the cable. The termination
requires one resistor: RTH for CAN_H and RTL for CAN_L. This
configuration allows the Philips fault-tolerant CAN transceiver to detect
any of seven network faults. You can use your PCI-CAN/LS or PXI-8460
to connect to a low-speed CAN network having from two to 32 nodes as
specified by Philips (including the port on the PCI-CAN/LS or PXI-8460
as a node). You can also use the PCI-CAN/LS or PXI-8460 to communicate
with individual low-speed CAN devices. It is important to determine the
overall termination of your existing network, or the termination of your
individual device, before connecting it to a PCI-CAN/LS or PXI-8460 port.
Philips recommends an overall RTH and RTL termination of 100 to 500 Ω
(each) for a properly terminated low-speed network. The overall network
termination may be determined as follows:

Low-speed
CAN Device

RTL CAN_L RTH CAN_H

Low-speed
CAN Device

RTL CAN_L RTH CAN_H

Low-speed
CAN Device

RTL CAN_L RTH CAN_H

CAN_H

CAN_L

1
RRTH overall†
-------------------------- 1

RRTH node 1

------------------------ 1
RRTH node 2

------------------------ 1
RRTH node 3

------------------------ 1
RRTH node n

------------------------+ + +=

Appendix C Cabling Requirements for Low-Speed CAN

NI-CAN Hardware and Software Manual C-8 ni.com

Philips also recommends an individual device RTH and RTL termination of
500 to 16 kΩ. The PCI-CAN/LS or PXI-8460 card ships with mounted
RTH and RTL values of 510 Ω ±5% per port. The PCI-CAN/LS or
PXI-8460 kit also includes a pair of 15 kΩ ±5% resistors for each port.
After determining the termination of your existing network or device, you
can use the following formula to indicate which value should be placed
on your PCI-CAN/LS or PXI-8460 card in order to produce the proper
overall RTH and RTL termination of 100 to 500 Ω upon connection of
the card:

*RRTH overall should be between 100 and 500 Ω

**RRTH of low-speed CAN interface = 510 Ω ±5% (mounted) or 15 kΩ ±5% (in kit)

†RRTH = RRTL

As the formula indicates, the 510 Ω ±5% shipped on your card will work
with properly terminated networks having a total RTH and RTL termination
of 125 to 500 Ω, or individual devices having an RTH and RTL termination
of 500 to 16 kΩ. For communication with a network having an overall RTH
and RTL termination of 100 to 125 Ω, you will need to replace the 510 Ω
resistors with the 15 kΩ resistors in the kit. Refer to the next section,
Replacing the Termination Resistors on Your PCI-CAN/LS Board.

The PCMCIA-CAN/LS cable ships with screw-terminal mounted RTH and
RTL values of 510 Ω ±5% per port. The PCMCIA-CAN/LS cable also
internally mounts a pair of 15.8 KΩ ±1% resistors in parallel with the
external 510 Ω resistors for each port. This produces an effective RTH and
RTL of 494 Ω per port for the PCMCIA-CAN/LS cable. After determining
the termination of your existing network or device, you can use the formula
below to indicate which configuration should be used on your
PCMCIA-CAN/LS cable to produce the proper overall RTH and RTL
termination of 100 to 500 Ω upon connection of the cable:

RRTH overall*†
1

1
RRTH of low-speed CAN interface**

--- 1
RRTH of existing network or device

--+ 
 
---=

RRTH overall*,†
1

1
RRTH of PCMCIA-CAN/LS**

-- 1
RRTH of existing network or device

--+ 
 
---=

Appendix C Cabling Requirements for Low-Speed CAN

© National Instruments Corporation C-9 NI-CAN Hardware and Software Manual

*RRTH overall should be between 100 and 500 Ω

**RRTH of PCMCIA-CAN/LS = 494 Ω (510 Ω ± 5% (external) in parallel with
15.8 KΩ ± 1% (internal)), or 15.8 KΩ ± 1% (internal) only

†RRTH = RRTL

As the formula indicates, the 510 Ω ± 5% in parallel with 15.8 KΩ ± 1%
shipped on your cable will work with properly terminated networks
having a total RTH and RTL termination of 125 to 500 Ω, or individual
devices having an RTH and RTL termination of 500 to 16 ΚΩ. For
communication with a network having an overall RTH and RTL
termination of 100 to 125 Ω, you will need to disconnect the 510 Ω
resistors from the 7-pin pluggable screw terminal. This will make the
RTH and RTL values of the PCMCIA-CAN/LS cable equal to the internal
resistance of 15.8 KΩ ± 1%. To produce RTH and RTL values between
494 and 15.8 KΩ on the PCMCIA-CAN/LS cable, use the following
formula:

***RInternal RTH of PCMCIA-CAN/LS = 15.8 KΩ ± 1%

†RRTH = RRTL

For information on replacing the external RTH and RTL resistors on your
PCMCIA-CAN/LS cable, refer to Replacing the Termination Resistors on
Your PCMCIA-CAN/LS Cable.

RExternal RTH of PCMCIA-CAN/LS†
1

1
RDesired RTH of PCMCIA-CAN/LS

-- 1
RInternal RTH of PCMCIA-CAN/LS***

--– 
 
---=

Appendix C Cabling Requirements for Low-Speed CAN

NI-CAN Hardware and Software Manual C-10 ni.com

Replacing the Termination Resistors on Your PCI-CAN/LS Board
Follow these steps to replace the termination resistors on your
PCI-CAN/LS card, after you have determined the correct value in the
previous section, Determining the Necessary Termination Resistance for
Your Board.

1. Remove the termination resistors on your low-speed CAN card.
Figure C-7 shows the location of the termination resistor sockets on
a PCI-CAN/LS2 card.

Figure C-7. Location of Termination Resistors on PCI-CAN/LS2 Board

2. Cut and bend the lead wires of the resistors you want to install. Refer to
Figure C-8.

Figure C-8. Preparing Lead Wires of Replacement Resistors

1 Port 1 Termination Resistors 2 Port 2 Termination Resistors

1

2

0.5 in.
(13 mm)

0.165 in.
(4 mm)

Appendix C Cabling Requirements for Low-Speed CAN

© National Instruments Corporation C-11 NI-CAN Hardware and Software Manual

3. Insert the replacement resistors into the empty sockets.

4. Refer to the CAN Hardware and NI-CAN Software for Windows
Installation Guide in the jewel case of your program CD to complete
the hardware installation.

Replacing the Termination Resistors on Your PXI-8460 Board
Follow these steps to replace the termination resistors, after you have
determined the correct value in the previous section, Determining the
Necessary Termination Resistance for Your Board.

1. Remove the termination resistors on your PXI-8460. Figure C-9 shows
the location of the termination resistor sockets on a PXI-8460.

Figure C-9. Location of Termination Resistors on a PXI-8460

1 Port 1 Termination Resistors 2 Port 2 Termination Resistors

1

2

Appendix C Cabling Requirements for Low-Speed CAN

NI-CAN Hardware and Software Manual C-12 ni.com

2. Cut and bend the lead wires of the resistors you want to install. Refer to
Figure C-10.

Figure C-10. Preparing Lead Wires of Replacement Resistors

3. Insert the replacement resistors into the empty sockets.

4. Refer to the CAN Hardware and NI-CAN Software for Windows
Installation Guide in the jewel case of your program CD to complete
the hardware installation.

Replacing the Termination Resistors on Your PCMCIA-CAN/LS Cable
Follow these steps to replace the termination resistors on your
PCMCIA-CAN/LS cable after you have determined the correct value in
the Determining the Necessary Termination Resistance for Your Board
section.

1. Remove the two termination resistors on your PCMCIA-CAN/LS
cable by loosening the pluggable terminal block mounting screws
for pins 1 and 2 (RTL) and pins 6 and 7 (RTH).

2. Bend and cut the lead wires of the two resistors you want to install,
as shown Figure C-11.

Figure C-11. Preparing Lead Wires of PCMCIA-CAN/LS Cable Replacement Resistors

0.5 in.
(13 mm)

0.165 in.
(4 mm)

 0.3 in.

 0.138 in.

(7.62 mm)

(3.5 mm)

Appendix C Cabling Requirements for Low-Speed CAN

© National Instruments Corporation C-13 NI-CAN Hardware and Software Manual

3. Mount RTL by inserting the leads of one resistor into pins 1 and 2
of the pluggable terminal block and tightening the mounting screws.
Mount RTH by inserting the leads of the second resistor into
pins 6 and 7 of the pluggable terminal block and tightening the
mounting screws.

4. Refer to the CAN Hardware and NI-CAN Software for Windows
Installation Guide in the jewel case of your program CD to complete
the hardware installation.

Cabling Example
Figure C-12 shows an example of a cable to connect two low-speed CAN
devices. For the PCMCIA-CAN/LS cables, only V–, CAN_L, and CAN _H
are required to be connected to the bus.

Figure C-12. Cabling Example

9-Pin
D-Sub

9-Pin
D-Sub

CAN_H

CAN_L

V+

V+

V–

V–

7-Pin
Combicon

7-Pin
Combicon

Pin 7Pin 6 Pin 7 Pin 6

Pin 2 Pin 2

Pin 5 Pin 4

Pin 9 Pin 5

Pin 3 Pin 3

Pin 2Pin 2

Pin 5Pin 4

Pin 9Pin 5

Pin 3Pin 3

Power
Connector

SHIELD

© National Instruments Corporation D-1 NI-CAN Hardware and Software Manual

D
Cabling Requirements for
Dual-Speed CAN

This section describes the cabling requirements for the dual-speed CAN
hardware.

Port Identification
The PCI-CAN/DS card, PXI-8462 card, and PCMCIA-CAN/DS cable
each provide a high-speed CAN port (port one), and a low-speed CAN port
(port two). Port one of the PCI-CAN/DS is identical to port one of the
PCI-CAN and PCI-CAN/2, and port two is identical to port two of the
PCI-CAN/LS2.

Port one of the PXI-8462 is identical to port one of the PXI-8461 one-port
and PXI-8461 two-port cards. Port two of the PXI-8462 is identical to port
two of the PXI-8460 two-port card.

Port one of the PCMCIA-CAN/DS cable is identical to port one of the
PCMCIA-CAN and PCMCIA-CAN/2 cables, and port two is identical
to port two of the PCMCIA-CAN/LS2 cable. The PCI-CAN/DS card,
PXI-8462 card and PCMCIA-CAN/DS cable allow simultaneous
communication with both a high-speed and low-speed bus, each with
its own specific cabling and termination requirements. For cabling
requirements and port information for the high-speed CAN port, refer to
Appendix B, Cabling Requirements for Dual-Speed CAN, in this manual.
For cabling requirements and port information for the low-speed CAN port,
refer to Appendix C, Cabling Requirements for Low-Speed CAN.

© National Instruments Corporation E-1 NI-CAN Hardware and Software Manual

E
RTSI Bus

This appendix describes the RTSI interface on your CAN card.

RTSI and PCI
Figure E-1 shows the RTSI connector pinout for the PCI-CAN series cards.

Figure E-1. PCI-CAN Series RTSI Connector Pinout

Using the National Instruments RTSI bus with your CAN card consists of
connecting it to other RTSI-equipped cards with RTSI ribbon cable, to
route timing and trigger signals between the cards. Using the RTSI bus,
your CAN card can be synchronized with multiple National Instruments
DAQ cards in your computer. The RTSI bus can also be used to synchronize
multiple CAN cards.

PCI-CAN Series Trigger PCI-CAN Series Pin Number

RTSI Trigger <0>
RTSI Trigger <1>
RTSI Trigger <2>
RTSI Trigger <3>
RTSI Trigger <4>
RTSI Trigger <5>
RTSI Trigger <6>
RTSI Oscillator
GND

20
22
24
26
28
30
32
34
19, 21, 23, 25, 27, 29, 31, 33

1

2

33

34

PCB

RTSI
Connector

Appendix E RTSI Bus

NI-CAN Hardware and Software Manual E-2 ni.com

The PCI-CAN and PCI-CAN/2 cards allow for the connection of four RTSI
input signals and four RTSI out put signals. In order to fully support the
fault reporting capabilities of the low-speed transceivers used on the
PCI-CAN/LS, PCI-CAN/LS2, and PCI-CAN/DS, three RTSI lines on
those cards are reserved for low-speed CAN fault reporting. This allows for
the connection of three RTSI input signals and two RTSI output signals to
the cards, providing them the real time synchronization benefits of RTSI
without sacrificing low-speed CAN fault reporting.

RTSI, PXI and CompactPCI
Using PXI-compatible products with standard CompactPCI products is an
important feature provided by the PXI Specification, Revision 1.0. If you
use a PXI-compatible plug-in device in a standard CompactPCI chassis,
you will be unable to use PXI-specific functions, but you can still use
the basic plug-in device functions. For example, the RTSI bus on your
PXI-846x series card is available in a PXI chassis, but not in a CompactPCI
chassis. The CompactPCI specification permits vendors to develop
sub-buses that coexist with the basic PCI interface on the CompactPCI bus.
Compatible operation is not guaranteed between CompactPCI devices with
different sub-buses nor between CompactPCI devices with sub-buses and
PXI. The standard implementation for CompactPCI does not include these
sub-buses. Your PXI-846x device will work in any standard CompactPCI
chassis adhering to the PICMG 2.0 R2.1 CompactPCI core specification
using the 64-bit definition for J2. PXI specific features are implemented on
the J2 connector of the CompactPCI bus. Table E-1 lists the J2 pins your
PXI-846x series card uses. Your PXI card is compatible with any
CompactPCI chassis with a sub-bus that does not drive these lines. Even if
the sub-bus is capable of driving these lines, the card is still compatible as
long as those pins on the sub-bus are disabled by default and not ever
enabled. Damage may result if these lines are driven by the sub-bus.

The PXI-8461 one-port and two-port cards allow for the connection of four
RTSI input signals and four RTSI output signals. In order to fully support
the fault reporting capabilities of the low-speed transceivers used on the
PXI-8460 one port, PXI-8460 two port, and PXI-8462, three RTSI lines on
those cards are reserved for low-speed CAN fault reporting. This allows for
the connection of three RTSI input signals and two RTSI output signals to
the cards, providing them the real time synchronization benefits of RTSI
without sacrificing low-speed CAN fault reporting.

Appendix E RTSI Bus

© National Instruments Corporation E-3 NI-CAN Hardware and Software Manual

RTSI Cables
National Instruments offers a variety of RTSI bus cables for connecting
your CAN card to other CAN or DAQ hardware. For more specific
information about these cables, you can refer to the National Instruments
catalog, or our Web site ni.com.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

RTSI Programming
For more information on RTSI programming, refer to the Synchronization
section of Chapter 4, Using the Channel API, and the RTSI section of
Chapter 7, Using the Frame API. Refer to the RTSI Bus Overview section
of Chapter 1, Introduction, for more information on the RTSI bus.

Table E-1. Pins Used By the PXI-846x Series Boards

PXI Pin Name PXI J2 Pin Number

PXI Star D17

PXI Trigger <0> B16

PXI Trigger <1> A16

PXI Trigger <2> A17

PXI Trigger <3> A18

PXI Trigger <4> B18

PXI Trigger <5> C18

PXI Trigger <7> E16

© National Instruments Corporation F-1 NI-CAN Hardware and Software Manual

F
Summary of the CAN Standard

History and Use of CAN
In the past few decades, the need for improvements in automotive
technology has led to increased use of electronic control systems
for functions such as engine timing, anti-lock brake systems, and
distributorless ignition. With conventional wiring, data is exchanged in
these systems using dedicated signal lines. As the complexity and number
of devices has increased, using dedicated signal lines has become
increasingly difficult and expensive.

To overcome the limitations of conventional automotive wiring, Bosch
developed the Controller Area Network (CAN) in the mid-1980s. Using
CAN, devices (controllers, sensors, and actuators) are connected on a
common serial bus. This network of devices can be thought of as a
scaled-down, real-time, low-cost version of networks used to connect
personal computers. Any device on a CAN network can communicate with
any other device using a common pair of wires.

As CAN implementations increased in the automotive industry, CAN was
standardized internationally as ISO 11898, and CAN chips were created by
major semiconductor manufacturers such as Intel, Motorola, and Philips.
With these developments, many manufacturers of industrial automation
equipment began to consider CAN for use in industrial applications.
Comparison of the requirements for automotive and industrial device
networks showed many similarities, including the transition away from
dedicated signal lines, low cost, resistance to harsh environments, and high
real-time capabilities.

Because of these similarities, CAN became widely used in industrial
applications such as textile machinery, packaging machines, and
production line equipment such as photoelectric sensors and motion
controllers. By the mid-1990s, CAN was specified as the basis of many
industrial device networking protocols, including DeviceNet, and
CANopen.

Appendix F Summary of the CAN Standard

NI-CAN Hardware and Software Manual F-2 ni.com

With its growing popularity in automotive and industrial applications, CAN
has been increasingly used in a wide variety of diverse applications. Use in
systems such as agricultural equipment, nautical machinery, medical
apparatus, semiconductor manufacturing equipment, and machine tools
testify to the incredible versatility of CAN.

CAN Identifiers and Message Priority
When a CAN device transmits data onto the network, an identifier that is
unique throughout the network precedes the data. The identifier defines not
only the content of the data, but also the priority.

When a device transmits a message onto the CAN network, all other
devices on the network receive that message. Each receiving device
performs an acceptance test on the identifier to determine if the message
is relevant to it. If the received identifier is not relevant to the device (such
as RPM received by an air conditioning controller), the device ignores the
message.

When more than one CAN device transmits a message simultaneously, the
identifier is used as a priority to determine which device gains access to the
network. The lower the numerical value of the identifier, the higher its
priority.

Figure F-1 shows two CAN devices attempting to transmit messages, one
using identifier 647 hex, and the other using identifier 6FF hex. As each
device transmits the 11 bits of its identifier, it examines the network to
determine if a higher-priority identifier is being transmitted simultaneously.
If an identifier collision is detected, the losing device(s) immediately cease
transmission, and wait for the higher-priority message to complete before
automatically retrying. Because the highest priority identifier continues
its transmission without interruption, this scheme is referred to as
nondestructive bitwise arbitration, and CAN’s identifier is often referred
to as an arbitration ID. This ability to resolve collisions and continue with
high-priority transmissions is one feature that makes CAN ideal for
real-time applications.

Appendix F Summary of the CAN Standard

© National Instruments Corporation F-3 NI-CAN Hardware and Software Manual

Figure F-1. Example of CAN Arbitration

CAN Frames
In a CAN network, the messages transferred across the network are called
frames. The CAN protocol supports two frame formats as defined in the
Bosch version 2.0 specifications, the essential difference being in the
length of the arbitration ID. In the standard frame format (also known as
2.0A), the length of the ID is 11 bits. In the extended frame format (also
known as 2.0B), the length of the ID is 29 bits. Figure F-2 shows the
essential fields of the standard and extended frame formats, and the
following sections describe each field.

Figure F-2. Standard and Extended Frame Formats

Start of Frame (SOF)
Start of Frame is a single bit (0) that marks the beginning of a CAN frame.

S

S

Device B Loses Arbitration
Device A Wins Arbitration and Proceeds

Device A
ID = 11001000111 (647 hex)

Device B
ID = 11011111111 (6FF hex)

S = Start Frame Bit

Standard Frame Format

Extended Frame Format

S
O
F

R
T
R

I
D
E

A
C
K

11-Bit
Arbitration ID DLC 0–8 Data bytes 15-Bit CRC End of Frame

S
O
F

I
D
E

R
T
R

High 11 Bits
of Arbitration ID

Low 18 Bits
of Arbitration ID DLC 0–8 Data bytes

A
C
K

15-Bit CRC End of Frame

Appendix F Summary of the CAN Standard

NI-CAN Hardware and Software Manual F-4 ni.com

Arbitration ID
The arbitration ID fields contain the identifier for a CAN frame.
The standard format has one 11-bit field, and the extended format has
two fields, which are 11 and 18 bits in length. In both formats, bits of
the arbitration ID are transmitted from high to low order.

Remote Transmit Request (RTR)
The Remote Transmit Request bit is dominant (0) for data frames, and
recessive (1) for remote frames. Data frames are the fundamental means
of data transfer on a CAN network, and are used to transmit data from
one device to one or more receivers. A device transmits a remote frame
to request transmission of a data frame for the given arbitration ID. The
remote frame is used to request data from its source device, rather than
waiting for the data source to transmit the data on its own.

Identifier Extension (IDE)
The Identifier Extension bit differentiates standard frames from extended
frames. Because the IDE bit is dominant (0) for standard frames and
recessive (1) for extended frames, standard frames are always higher
priority than extended frames.

Data Length Code (DLC)
The Data Length Code is a 4-bit field that indicates the number of data
bytes in a data frame. In a remote frame, the Data Length Code indicates
the number of data bytes in the requested data frame. Valid Data Length
Codes range from zero to eight.

Data Bytes
For data frames, this field contains from 0 to 8 data bytes. Remote CAN
frames always contain zero data bytes.

Cyclic Redundancy Check (CRC)
The 15-bit Cyclic Redundancy Check detects bit errors in frames. The
transmitter calculates the CRC based on the preceding bits of the frame,
and all receivers recalculate it for comparison. If the CRC calculated by
a receiver differs from the CRC in the frame, the receiver detects an error.

Appendix F Summary of the CAN Standard

© National Instruments Corporation F-5 NI-CAN Hardware and Software Manual

Acknowledgment Bit (ACK)
All receivers use the Acknowledgment Bit to acknowledge successful
reception of the frame. The ACK bit is transmitted recessive (1), and
is overwritten as dominant (0) by all devices that receive the frame
successfully. The receivers acknowledge correct frames regardless of the
acceptance test performed on the arbitration ID. If the transmitter of the
frame detects no acknowledgment, it could mean that the receivers detected
an error (such as a CRC error), the ACK bit was corrupted, or there are no
receivers (for example, only one device on the network). In such cases, the
transmitter automatically retransmits the frame.

End of Frame
Each frame ends with a sequence of recessive bits. After the required
number of recessive bits, the CAN bus is idle, and the next frame
transmission can begin.

CAN Error Detection and Confinement
One of the most important and useful features of CAN is its high reliability,
even in extremely noisy environments. CAN provides a variety of
mechanisms to detect errors in frames. This error detection is used to
retransmit the frame until it is received successfully. CAN also provides
an error confinement mechanism used to remove a malfunctioning device
from the CAN network when a high percentage of its frames result in
errors. This error confinement prevents malfunctioning devices from
disturbing the overall network traffic.

Error Detection
Whenever any CAN device detects an error in a frame, that device
transmits a special sequence of bits called an error flag. This error flag is
normally detected by the device transmitting the invalid frame, which then
retransmits to correct the error. The retransmission starts over from the start
of frame, and thus arbitration with other devices is again possible.

CAN devices detect the following errors, which are described in the
following sections:

• Bit error

• Stuff error

• CRC error

Appendix F Summary of the CAN Standard

NI-CAN Hardware and Software Manual F-6 ni.com

• Form error

• Acknowledgment error

Bit Error
During frame transmissions, a CAN device monitors the bus on a bit-by-bit
basis. If the bit level monitored is different from the transmitted bit, a bit
error is detected. This bit error check applies only to the Data Length Code,
Data Bytes, and Cyclic Redundancy Check fields of the transmitted frame.

Stuff Error
Whenever a transmitting device detects five consecutive bits of equal value,
it automatically inserts a complemented bit into the transmitted bit stream.
This stuff bit is automatically removed by all receiving devices. The bit
stuffing scheme is used to guarantee enough edges in the bit stream to
maintain synchronization within a frame.

A stuff error occurs whenever six consecutive bits of equal value are
detected on the bus.

CRC Error
A CRC error is detected by a receiving device whenever the calculated
CRC differs from the actual CRC in the frame.

Form Error
A form error occurs when a violation of the fundamental CAN frame
encoding is detected. For example, if a CAN device begins transmitting
the Start Of Frame bit for a new frame before the End Of Frame sequence
completes for a previous frame (does not wait for bus idle), a form error
is detected.

Acknowledgment Error
An acknowledgment error is detected by a transmitting device whenever it
does not detect a dominant Acknowledgment Bit (ACK).

Error Confinement
To provide for error confinement, each CAN device must implement
a transmit error counter and a receive error counter. The transmit error
counter is incremented when errors are detected for transmitted frames,
and decremented when a frame is transmitted successfully. The receive

Appendix F Summary of the CAN Standard

© National Instruments Corporation F-7 NI-CAN Hardware and Software Manual

error counter is used for received frames in much the same way. The error
counters are increased more for errors than they are decreased for
successful reception/transmission. This ensures that the error counters
will generally increase when a certain ratio of frames (roughly 1/8)
encounter errors. By maintaining the error counters in this manner, the
CAN protocol can generally distinguish temporary errors (such as those
caused by external noise) from permanent failures (such as a broken cable).
For complete information on the rules used to increment/decrement the
error counters, refer to the CAN specification (ISO 11898).

With regard to error confinement, each CAN device may be in one of three
states: error active, error passive, and bus off.

Error Active State
When a CAN device is powered on, it begins in the error active state.
A device in error active state can normally take part in communication,
and transmits an active error flag when an error is detected. This active
error flag (sequence of dominant 0 bits) causes the current frame
transmission to abort, resulting in a subsequent retransmission. A CAN
device remains in the error active state as long as the transmit and receive
error counters are both below 128. In a normally functioning network of
CAN devices, all devices are in the error active state.

Error Passive State
If either the transmit error counter or the receive error counter increments
above 127, the CAN device transitions into the error passive state. A device
in error passive state can still take part in communication, but transmits
a passive error flag when an error is detected. This passive error flag
(sequence of recessive 1 bits) generally does not abort frames transmitted
by other devices. Since passive error flags cannot prevail over any activity
on the bus line, they are noticed only when the error passive device is
transmitting a frame. Thus, if an error passive device detects a receive error
on a frame which is received successfully by other devices, the frame is not
retransmitted.

One special rule to keep in mind is that when an error passive device detects
an acknowledgment error, it does not increment its transmit error counter.
Thus, if a CAN network consists of only one device (for example, if you do
not connect a cable to your National Instruments CAN interface), and that
device attempts to transmit a frame, it retransmits continuously but never
goes into bus off state (although it eventually reaches error passive state).

Appendix F Summary of the CAN Standard

NI-CAN Hardware and Software Manual F-8 ni.com

Bus Off State
If the transmit error counter increments above 255, the CAN device
transitions into the bus off state. A device in the bus off state does not
transmit or receive any frames, and thus cannot have any influence on
the bus. The bus off state is used to disable a malfunctioning CAN device
which frequently transmits invalid frames, so that the device does not
adversely impact other devices on the network. When a CAN device
transitions to bus off, it can be placed back into error active state (with both
counters reset to zero) only by manual intervention. For sensor/actuator
types of devices, this often involves powering the device off then on. For
NI-CAN network interfaces, communication can be started again using an
API function.

Low-Speed CAN
Low-speed CAN is commonly used to control “comfort” devices in an
automobile, such as seat adjustment, mirror adjustment, and door locking.
It differs from “high-speed” CAN in that the maximum baud rate is 125 K
and it utilizes CAN transceivers that offer fault-tolerant capability. This
enables the CAN bus to keep operating even if one of the wires is cut or
short-circuited because it operates on relative changes in voltage, and thus
provides a much higher level of safety. The transceiver solves many
common and frequent wiring problems such as poor connectors, and also
overcomes short circuits of either transmission wire to ground or battery
voltage, or the other transmission wire. The transceiver resolves the fault
situation without involvement of external hardware or software. On the
detection of a fault, the transceiver switches to a one wire transmission
mode and automatically switches back to differential mode if the fault is
removed.

Special resistors are added to the circuitry for the proper operation of the
fault-tolerant transceiver. The values of the resistors depend on the number
of nodes and the resistance values per node. For guidelines on selecting the
resistor, refer to Appendix C, Cabling Requirements for Low-Speed CAN.

Because the low-speed transceiver switches to a fault tolerant mode on fault
detection and continues to maintain communications, NI-CAN provides a
special attribute, Log Comm Warnings, which when set to true enables the
reporting of such warnings in the Read queue of the Network Interface
rather than in the status returned from a function call. The default value of
this attribute is false, which enables the reporting of low-speed transceiver
warnings in the status returned from a function call.

© National Instruments Corporation G-1 NI-CAN Hardware and Software Manual

G
Specifications

This appendix describes the physical characteristics of the CAN hardware,
along with the recommended operating conditions.

PCI-CAN Series
Dimensions... 10.67 by 17.46 cm

(4.2 by 6.9 in.)

Power requirement +5 VDC, 775 mA typical

I/O connector.. 9-pin D-Sub for each port
(standard)
or
5-pin Combicon-style pluggable
DeviceNet screw terminal
(high-speed CAN only)

Operating environment

Ambient temperature 0 to 55 °C

Relative humidity............................ 10 to 90%, noncondensing

Storage environment

Ambient temperature –20 to 70 °C

Relative humidity............................ 5 to 90%, noncondensing

PCMCIA-CAN Series
Dimensions... 8.56 by 5.40 by 0.5 cm

(3.4 by 2.1 by 0.4 in.)

Power requirement 500 mA typical

I/O connector.. Cable with 9-pin D-Sub and
pluggable screw terminal for
each port

Appendix G Specifications

NI-CAN Hardware and Software Manual G-2 ni.com

Operating environment

Ambient temperature0 to 55 °C

Relative humidity10 to 90%, noncondensing

Storage environment

Ambient temperature–20 to 70 °C

Relative humidity5 to 90%, noncondensing

PXI-CAN Series
Dimensions ...16.0 by 10.0 cm

(6.3 by 3.9 in.)

Power requirement..................................+5 VDC, 775 mA typical

I/O connector ..9-pin D-Sub for each port
(standard)
or
5-pin Combicon-style pluggable
DeviceNet screw terminal
(high-speed CAN only)

Operating environment

Ambient temperature0 to 55 °C

Relative humidity10 to 90%, noncondensing

Storage environment

Ambient temperature–20 to 70 °C

Relative humidity5 to 95%, noncondensing

(Tested in accordance with IEC-60068-2-1, IEC-60068-2-2,
IEC-60068-2-56.)

Functional Shock30 g peak, half-sine, 11ms pulse
(Tested in accordance with IEC-60068-2-27. Test profile developed in
accordance with MIL-T-28800E.)

Random Vibration

Operating ...5 to 500 Hz, 0.3 grms

Nonoperating5 to 500 Hz, 2.4 grms

(Tested in accordance with IEC-60068-2-64. Nonoperating test profile
developed in accordance with MIL-T-28800E and MIL-STD-810E
Method 514.)

Appendix G Specifications

© National Instruments Corporation G-3 NI-CAN Hardware and Software Manual

High-Speed CAN Port Characteristics
Bus power .. 0 to 30 V, 40 mA typical,

100mA maximum

CAN-H, CAN-L..................................... –8 to +18V, DC or peak, CATI

Low-Speed CAN Port Characteristics
Bus Power .. 8 to 27 V, 40 mA typical,

100 mA maximum

CAN-H, CAN-L..................................... –10 to +27V, DC or peak, CATI

Safety
The NI-CAN hardware meets the requirements of the following standards
for safety and electrical equipment for measurement, control, and
laboratory use:

• EN 61010-1, IEC 61010-1

• UL 3111-1, UL 3121-1

• CAN/CSA C22.2 No. 1010.1

Electromagnetic Compatibility
EMC/EMI... CE, C-Tick, and FCC Part 15

(Class A) Compliant

Electrical emissions................................ EN 55011 Class A at 10 m
FCC Part 15A above 1 GHz

Electrical immunity................................ Evaluated to EN 61326:1997/
A1:1998, Table 1

Note For full EMC compliance, you must operate this device with shielded cabling.
In addition, all covers and filler panels must be installed. Refer to the Declaration of
Conformity (DoC) for this product for any additional regulatory compliance information.
To obtain the DoC for this product, click Declaration of Conformity at
ni.com/hardref.nsf/. This Web site lists the DoCs by product family. Select the
appropriate product family, followed by your product, and a link to the DoC appears in
Adobe Acrobat format. Click the Acrobat icon to download or read the DoC.

© National Instruments Corporation H-1 NI-CAN Hardware and Software Manual

H
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni.com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, hardware
schematics and conformity documentation, example code,
tutorials and application notes, instrument drivers, discussion
forums, a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/ask. Our online system helps you define your question
and connects you to the experts by phone, discussion forum,
or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and
interactive CDs. You also can register for instructor-led, hands-on
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation Glossary-1 NI-CAN Hardware and Software Manual

Glossary

Prefix Meanings Value

n- nano- 10–9

m- milli- 10–3

k- kilo- 103

M- mega- 106

A

action See method.

actuator A device that uses electrical, mechanical, or other signals to change
the value of an external, real-world variable. In the context of device
networks, actuators are devices that receive their primary data value from
over the network; examples include valves and motor starters. Also known
as final control element.

Application
Programming
Interface (API)

A collection of functions used by a user application to access hardware.
Within NI-CAN, you use API functions to make calls into the NI-CAN
driver. NI-CAN provides two different APIs: the Frame API and Channel
API.

arbitration ID An 11- or 29-bit ID transmitted as the first field of a CAN frame. The
arbitration ID determines the priority of the frame, and is normally used
to identify the data transmitted in the frame.

attribute The Frame API provides attributes to access configuration settings or other
information. In the Channel API, the term property is used for similar
settings.

Glossary

NI-CAN Hardware and Software Manual Glossary-2 ni.com

B

b Bits.

Behavior After
Final Output

Property in the Channel API that specifies the behavior to perform after the
final periodic output sample is transmitted. For more information, refer to
CAN Set Property.vi for LabVIEW, or nctSetProperty for C.

bus off A CAN node goes into the bus off state when its transmit error counter
increments above 255. The node does not participate in network traffic,
because it assumes that a defect exists that must be corrected.

C

CAN Controller Area Network.

CAN Channels See channel.

CAN controller Communications ship used to transmit and receive frames on a CAN
network. The majority of the CAN specification is implemented within the
CAN controller. Examples of CAN controllers include the Intel 82527 and
the Philips SJA1000.

CANdb CAN database format defined by Vector Informatik. CANdb files use the
.dbc file extension.

CAN database Database file that describes channels and associated messages for a
collection of CAN nodes. NI-CAN supports two CAN database formats:
CANdb, and the NI-CAN database.

CAN data frame Frame used to transmit the actual data of a CAN Object. The RTR bit
is clear, and the data length indicates the number of data bytes in the frame.

CAN frame In addition to fields used for error detection/correction, a CAN frame
consists of an arbitration ID, the RTR bit, a four-bit data length, and zero
to eight bytes of data.

CAN/LS See Low-speed CAN.

CAN Network
Interface Object

Within the NI-CAN Frame API, an object that encapsulates a CAN
interface on the host computer.

Glossary

© National Instruments Corporation Glossary-3 NI-CAN Hardware and Software Manual

CAN Object Within the NI-CAN Frame API, an object that encapsulates a specific CAN
arbitration ID along with its raw data bytes.

CAN remote frame Frame used to request data for a CAN Object from a remote node; the RTR
bit is set, and the data length indicates the amount of data desired (but no
data bytes are included).

channel Floating-point value in physical units (such as Volts, rpm, km/h, °C, and so
on) that is converted to/from a raw value in measurement hardware.

The NI-CAN Channel API’s Read and Write functions provide access to
CAN channels. When a CAN message is received, NI-CAN converts raw
fields in the message into physical units, which you then obtain using the
Channel API Read function. When you call a Channel API Write function,
you provide floating-point values in physical units, which NI-CAN
converts into raw fields and transmits as a CAN message.

For an example usage of the channel concept, refer to the Channel API
section in Introduction.

Channel API NI-CAN API that you use to read and write channels.

channel list Input parameter of the CAN Init Start function. The channel list specifies
the list of channels to read or write. For more information, refer to CAN
Init Start.vi for LabVIEW, or nctInitStart for C.

ChannelList See channel list.

class A set of objects that share a common structure and a common behavior.

clock drift When two or more hardware products are used to measure a common
system, you typically need to compare data from the hardware products
simultaneously. Since each hardware product contains its own local
oscillator to perform measurements, and all oscillators differ slightly in
speed and tolerances, measurements on different hardware products can
drift relative to one another. For example, if you measure the same sine
wave on two different analog-input products, the measured sine waves
typically drift out of phase after a few minutes.

National Instruments products use RTSI to share timebases among
different hardware products. Since the products share the same oscillator,
clock drift is eliminated.

Glossary

NI-CAN Hardware and Software Manual Glossary-4 ni.com

connection With respect to networking, this term refers to an association between two
or more nodes on a network that describes when and how data is
transferred.

With respect to RTSI, this term refers to a connection between two or more
terminals.

controller With respect to CAN, this term often refers to a CAN controller.

With respect to real-time systems, this term refers to a device that receives
input data and sends output data in order to hold one or more external,
real-world variables at a certain level or condition. A thermostat is a simple
example of a controller.

D

Default Value Property in the Channel API that specifies the default value for a channel.
For more information, refer to CAN Get Property.vi for LabVIEW, or
nctSetProperty for C.

device See node.

device network Multi-drop digital communication network for sensors, actuators, and
controllers.

DLL Dynamic link library.

DMA Direct memory access.

E

error active A CAN node is in error active state when both the receive and transmit error
counters are below 128.

error counters Every CAN node keeps a count of how many receive and transmit errors
have occurred. The rules for how these counters are incremented and
decremented are defined by the CAN protocol specification.

error passive A CAN node is in error passive state when one or both of its error counters
increment above 127. This state is a warning that a communication problem
exists, but the node is still participating in network traffic.

Glossary

© National Instruments Corporation Glossary-5 NI-CAN Hardware and Software Manual

extended
arbitration ID

A 29-bit arbitration ID. Frames that use extended IDs are often referred to
as CAN 2.0 Part B (the specification that defines them).

F

FCC Federal Communications Commission.

filepath Complete path to a filename using Windows conventions, such as:

C:\Program Files\National Instruments\NI-CAN\

MyDatabase.ncd

frame A unit of information transferred across a network from one node to
another. From an OSI perspective, NI-CAN’s usage of the term frame refers
to a Data Link Layer unit, because individual fields are not specified.

Frame API NI-CAN API that you use to read and write frames.

H

hex Hexadecimal.

Hz Hertz; cycles per second.

I

instance An abstraction of a specific real-world thing; for example, John is an
instance of the class Human. Also known as object.

Interface Baud Rate Property in the Channel API that specifies the baud rate of the interface.
For more information, refer to CAN Set Property.vi for LabVIEW, or
nctSetProperty for C.

Glossary

NI-CAN Hardware and Software Manual Glossary-6 ni.com

interface Reference to a specific CAN port in the NI-CAN software. NI-CAN
interface names are assigned within MAX, and can range from CAN0 to
CAN63.

In the Channel API, the interface is specified during initialization of the
task. For more information, refer to CAN Init Start.vi for LabVIEW, or
nctInitStart for C.

In the Frame API, the interface is specified during configuration of the
CAN Network Interface Object. For more information, refer to
ncConfigCANNet.vi for LabVIEW, or ncConfig for C.

Interface See interface.

ISO International Standards Organization.

K

KB Kilobytes of memory.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

local Within NI-CAN, anything that exists on the same host (personal computer)
as the NI-CAN driver.

Low-speed CAN Fault-tolerant CAN transceiver specification as defined in ISO 11898.

M

MAX The Measurement & Automation Explorer provides a centralized location
for configuration of National Instruments hardware products. MAX also
provides many useful tools for interaction with hardware.

MB Megabytes of memory.

message CAN data frame for which the individual fields are described. From an OSI
perspective, NI-CAN usage of the term frame refers to a User Layer unit,
because the Application Layer is assumed (simple peer-to-peer protocol),
and the channel configurations specify User Layer meaning.

Glossary

© National Instruments Corporation Glossary-7 NI-CAN Hardware and Software Manual

method An action performed on an instance to affect its behavior; the externally
visible code of an object. Within NI-CAN, you use NI-CAN functions to
execute methods for objects. Also known as service, operation, and action.

minimum interval For a given connection, the minimum amount of time between subsequent
attempts to transmit frames on the connection. Some protocols use
minimum intervals to guarantee a certain level of overall network
performance.

mode Input parameter of the CAN Init Start function. The mode specifies the
direction of data transfer (input or output), and the type of information
provided (input or timestamped input). For more information, refer to CAN
Init Start.vi for LabVIEW, or nctInitStart for C.

Mode See mode.

multi-drop A physical connection in which multiple devices communicate with one
another along a single cable.

N

network interface A node’s physical connection onto a network.

NI-CAN database CAN database format defined by National Instruments. NI-CAN database
files use the .ncd file extension.

NI-CAN driver Device driver and/or firmware that implement all the specifics of a CAN
network interface. Within NI-CAN, this software implements the CAN
Network Interface Object as well as all objects above it in the object
hierarchy.

node A physical assembly, linked to a communication line (cable), capable of
communicating across the network according to a protocol specification.
Also known as device.

notification Within NI-CAN, an operating system mechanism that the NI-CAN driver
uses to communicate events to your application. You can think of a
notification of as an API function, but in the opposite direction.

Glossary

NI-CAN Hardware and Software Manual Glossary-8 ni.com

O

object See instance.

object-oriented A software design methodology in which classes, instances, attributes, and
methods are used to hide all of the details of a software entity that do not
contribute to its essential characteristics.

OSI Open Systems Interconnection (OSI) is a collection of ISO standards for
communication protocols. Most people reference OSI in the context of the
layers that it specifies for all communication protocols. The Physical Layer
refers to physical connectors, cabling, and signal characteristics. The Data
Link Layer refers to the fundamental frame format. The Application Layer
refers to connection establishment and other higher-level transactions
between nodes. The User Layer is an informal term that refer to the
definition of specific fields in Application Layer messages that define how
an application uses the protocol.

P

peer-to-peer Network connection in which data is transmitted from the source to its
destination(s) without need for an explicit request. Although data transfer
is generally unidirectional, the protocol often uses low level
acknowledgments and error detection to ensure successful delivery.

periodic Connections that transfer data on the network at a specific rate.

polled Request/response connection in which a request for data is sent to a device,
and the device sends back a response with the desired value.

poly VI LabVIEW VI that accepts different data types for a single input or output
terminal. In some cases, the data type can be selected based on the value
that you wire to the poly input or output. To select a specific poly VI type,
right-click the VI, go to Select Type, and select the desired type. For more
information, refer to your LabVIEW documentation.

Like many other National Instruments APIs, the NI-CAN Channel API
implements Read and Write as poly VIs in order to support a variety of data
types.

polymorphic VI See poly VI.

Glossary

© National Instruments Corporation Glossary-9 NI-CAN Hardware and Software Manual

port The physical CAN connector on your NI-CAN hardware product.
You assign an interface name to each port using MAX.

property The Channel API provides properties to access configuration settings or
other information. LabVIEW also uses the term property for settings of
front panel controls and indicators. In the Frame API, the term attribute is
used for similar settings.

property nodes In LabVIEW, you can use property nodes to change the appearance or
behavior of front panel controls and indicators. For example, you can
change the label, minimum value, and maximum value of an indicator.
For more information, refer to your LabVIEW documentation.

protocol A formal set of conventions or rules for the exchange of information among
nodes of a given network.

R

RAM Random-access memory.

remote Within NI-CAN, anything that exists in another node of the device network
(not on the same host as the NI-CAN driver).

Remote Transmission
Request (RTR) bit

This bit follows the arbitration ID in a frame, and indicates whether the
frame is the actual data of the CAN Object (CAN data frame), or whether
the frame is a request for the data (CAN remote frame).

request/response Network connection in which a request is transmitted to one or more
destination nodes, and those nodes send a response back to the requesting
node. In industrial applications, the responding (slave) device is usually a
sensor or actuator, and the requesting (master) device is usually a controller.
Also known as master/slave.

resource Hardware settings used by National Instruments CAN hardware, including
an interrupt request level (IRQ) and an 8 KB physical memory range (such
as D0000 to D1FFF hex).

RTSI Real Time System Integration bus. National Instruments technology that
can be used to synchronize multiple hardware products. For PCI products,
this refers to the ribbon cable that is used to route signals between cards.
For PXI products, the RTSI signals are provided on the backplane. For
PCMCIA products, RTSI signals can be connected between a CAN card’s
sync cable and a DAQ card’s terminal block.

Glossary

NI-CAN Hardware and Software Manual Glossary-10 ni.com

S

s Seconds.

sample A floating-point value that represents physical units. In the NI-CAN
Channel API, you Read and Write samples using channels.

sample rate Input parameter of the CAN Init Start function. The sample rate specifies
whether to transfer data in a periodic or event-driven manner. For periodic
behavior, the rate specifies the number of read/write samples to perform per
second. For more information, refer to CAN Init Start.vi for LabVIEW, or
nctInitStart for C.

SampleRate See sample rate.

sensor A device that measures electrical, mechanical, or other signals from an
external, real-world variable; in the context of device networks, sensors are
devices that send their primary data value onto the network; examples
include temperature sensors and presence sensors. Also known as
transmitter.

signal Term used by other vendors of CAN products to refer to a CAN channel.

For National Instruments products, this term usually refers to a physical
voltage that represents a predefined behavior. For example, RTSI
connections are used to exchange signals.

standard
arbitration ID

An 11-bit arbitration ID. Frames that use standard IDs are often referred to
as CAN 2.0 Part A; standard IDs are by far the most commonly used.

start trigger When two or more hardware products are used to measure a common
system, you typically need to compare data from the hardware products
simultaneously. Since each hardware product starts its measurement
independently, measurements on different hardware products can often be
skewed in time relative to one another. For example, if you measure the
same sine wave on two different analog-input products, the measured sine
waves start off out of phase.

National Instruments products use RTSI to share start triggers among
different hardware products. Since the products share the same start trigger,
measurements begin at the same time.

Glossary

© National Instruments Corporation Glossary-11 NI-CAN Hardware and Software Manual

synchronize Connection of two or more hardware products in order to measure a
common system. For National Instruments products, RTSI connections are
used to synchronize.

Although there are a variety of ways to synchronize National Instruments
products, a common technique is to share a timebase and start trigger over
RTSI in order to eliminate clock drift and startup skew.

T

task A collection of channels that you can read or write.

The task is returned as an output parameter of the CAN Init Start function,
and is used for all subsequent Channel API calls such as Read or Write. For
more information, refer to CAN Init Start.vi for LabVIEW, or
nctInitStart for C.

terminal A physical pin on a hardware component. RTSI signals are one type of
terminal. Internal connections within hardware products are another type of
terminal.

timebase The fundamental clock used to perform measurement. National
Instruments synchronization features allow the timebase of one product to
be shared with another in order to eliminate clock drift.

Timeout Property in the Channel API that specifies the behavior the timeout in
seconds for Read and Write functions. For more information, refer to CAN
Set Property.vi for LabVIEW, or nctSetProperty for C.

U

unsolicited Connections that transmit data on the network sporadically based on an
external event. Also known as nonperiodic, sporadic, and event driven.

V

VI Virtual Instrument.

Glossary

NI-CAN Hardware and Software Manual Glossary-12 ni.com

W

watchdog timeout A timeout associated with a connection that expects to receive network data
at a specific rate. If data is not received before the watchdog timeout
expires, the connection is normally stopped. You can use watchdog
timeouts to verify that the remote node is still operational.

waveform data type LabVIEW data type that represents a sequential list of samples in time.
The data type includes the array of samples (each a DBL), a start time that
specifies when the first sample was measured, and a delay time that
specifies the time between samples (sample rate) or more information, refer
to your LabVIEW documentation.

The Read and Write functions of the Channel API support the LabVIEW
waveform data type.

© National Instruments Corporation Index-1 NI-CAN Hardware and Software Manual

Index

Numerics
5-pin Combicon-style pluggable screw terminal

(figure), B-2
9-pin D-sub connector pinout, high-speed

(figure), B-1
9-pin D-sub connector pinout, low-speed

(figure), C-1

A
Acknowledgment Bit (ACK) field, F-5
acknowledgment error, F-6
API (Application Programming Interface)

Channel API
additional programming topics, 4-10

Get Names, 4-10
Set Property, 4-11
Synchronization, 4-10

basic programming model, 4-4
(figure), 4-4
Clear, 4-10
Init Start, 4-5
Read, 4-6
Read Timestamped, 4-7
Read Timestamped (figure), 4-8
Write, 4-8

choose source of Channel
configuration, 4-1

decision process (figure), 4-1
Channel API for C, 6-1
Channel API, using, 4-1
choose which API to use, 3-5
Frame and Channel cannot simultaneously

use same CAN network interface, 5-33,
5-38, 6-27, 6-32, 8-9, 8-53, 9-9, 9-39

Frame API
additional programming topics, 7-7

CAN Network Interface Objects,
using with CAN Objects, 7-9

CAN Network Interface Objects,
using with CAN Objects
(figure), 7-10

detecting state changes, 7-11
disabling queues, 7-9
empty queues, 7-8
full queues, 7-9
remote frames, 7-7
RTSI, 7-7
state transitions, 7-8
using queues, 7-8

choose which objects to use, 7-1
close objects, 7-6
communicate using objects, 7-5
configuring objects, 7-5
Frame API for C, 9-1

section headings, 9-1
Frame API for LabVIEW, 8-1
open objects, 7-5
programming model, 7-3

(figure), 7-4
read data, 7-6
start communication, 7-5
using CAN network interface

objects, 7-1
using CAN objects, 7-2
wait for available data, 7-6

Frame API, using, 7-1
application development, 3-1

choose which API to use, 3-5
choose your programming language, 3-1

Borland C++, 3-3
LabVIEW, 3-1

Index

NI-CAN Hardware and Software Manual Index-2 ni.com

LabWindows/CVI, 3-2
other programming languages, 3-4
Visual C++ 6, 3-2

arbitration
example of CAN arbitration (figure), F-3
nondestructive bitwise, F-2

arbitration ID
definition, F-2

Arbitration ID field, F-4
AT-CAN series board

and RTS, 1-3
AT-CAN/2 parts locator diagram

(figure), B-4
power supply information for high-speed

CAN ports, B-4

B
bit error, F-6
Borland C++, 3-3
Bus Monitor, 2-4
bus off state, F-8
bus off states

ncReadNet.vi, 8-57
ncReadNetMult.vi, 8-61

bus power supply requirements
high-speed, B-7
low-speed, C-5

C
cable lengths, B-8
cable lengths, DeviceNet cable-length

specifications (table), B-8
cable specifications, B-8, C-6

ISO 11898 specifications for
characteristics of a CAN_H and
CAN_L pair of wires (table), B-8

specifications for characteristics of a
CAN_H and CAN_L pair of wires
(table), C-6

cable termination
high-speed CAN, B-9
low-speed CAN, C-7

cabling example
high-speed CAN (figure), B-10
low-speed CAN (figure), C-13

cabling requirements
dual-speed CAN, D-1
high-speed CAN, B-1
low-speed CAN, C-1

callback. See ncCreateNotification function
CAN

arbitration, F-2
error confinement, F-6
error detection, F-5
history and use, F-1
low speed, F-8

CAN channels, 2-3
CAN Clear Multiple Cards with

NI-DAQ.vi, 5-8
CAN Clear with NI-DAQ.vi, 5-6
CAN Clear.vi, 5-4
CAN Connect Terminals.vi, 5-10

valid combinations of source/destination
(table), 5-14

CAN Create Message.vi, 5-15
CAN data frame (figure), 1-1
CAN Disconnect Terminals.vi, 5-20
CAN error detection and confinement, F-5
CAN frame reception flowchart (figure), 7-10
CAN frames

definition, F-3
fields

Acknowledgment Bit (ACK), F-5
Arbitration ID, F-4
Cyclic Redundancy Check

(CRC), F-4
Data Bytes, F-4
Data Length Code (DLC), F-4
End of Frame, F-5
Identifier Extension (IDE), F-4

Index

© National Instruments Corporation Index-3 NI-CAN Hardware and Software Manual

Remote Transmit Request
(RTR), F-4

Start of Frame (SOF), F-3
reading and writing, 7-2
standard and extended formats

(figure), F-3
CAN Get Names.vi, 5-22
CAN Get Property.vi, 5-25
CAN identifiers, F-2
CAN Init Start.vi, 5-36
CAN Initialize.vi, 5-33
CAN interface cables

5-pin Combicon-style pluggable screw
terminal (figure), B-2

cable lengths, B-8
cable termination

high-speed CAN, B-9
low-speed CAN, C-7

cabling example
high-speed CAN (figure), B-10
low-speed CAN (figure), C-13

connector pinouts
high-speed, B-1
low-speed, C-1

connector pinouts, RTSI, E-1
DeviceNet cable-length specifications

(table), B-8
dual-speed, D-1
high-speed, B-1
low-speed, C-1
PCMCIA-CAN cable (figure), B-3
PCMCIA-CAN/LS cable

(figure), C-2
termination resistors, C-12

pinout for 9-pin D-sub connector,
high-speed (figure), B-1

specifications
ISO 11898 specifications for

characteristics of a CAN_H and
CAN_L pair of wires (table), B-8

termination resistor placement
(figure), B-9
low-speed CAN, C-7

CAN Network Interface Objects
communication

starting, 7-5
using objects, 7-5

possible uses, 7-1
using with CAN Objects, 7-9

flowchart for CAN frame reception
(figure), 7-10

CAN Network Interface Objects
(ncAction.vi), 8-5

actions supported (table), 8-6
CAN Object (ncAction.vi), actions supported

(table), 8-6
CAN Objects

choosing NI-CAN Objects
CAN Network interface Objects, 7-1
CAN Objects, 7-2

closing, 7-6
configuration, methods for, 7-5
opening, 7-5
using, 7-2

CAN overview, 1-1
simplified CAN data frame (figure), 1-1

CAN Read.vi, 5-41
CAN Set Property.vi, 5-49
CAN standard, summary of, F-1
CAN Start.vi, 5-53
CAN Stop.vi, 5-55
CAN Sync Start with Multiple Cards with

NI-DAQ.vi, 5-60
CAN Sync Start with NI-DAQ.vi, 5-57
CAN Write.vi, 5-63
Channel API, 1-4

additional programming topics, 4-10
Get Names, 4-10
Set Property, 4-11
Synchronization, 4-10

Index

NI-CAN Hardware and Software Manual Index-4 ni.com

basic programming model, 4-4
(figure), 4-4
Clear, 4-10
Init Start, 4-5
Read, 4-6
Read Timestamped, 4-7
Read Timestamped (figure), 4-8
Write, 4-8

choose source of Channel
configuration, 4-1

decision process (figure), 4-1
CruiseControl message, example of

(figure), 1-5
Frame and Channel cannot

simultaneously use same CAN network
interface, 5-33, 5-38, 6-27, 6-32,
8-9, 8-53

Channel API for C, 6-1
data types (table), 6-2
description, details of purpose and

effect, 6-1
format, description, 6-1
input and output, description, 6-1
list of functions (table), 6-3
purpose, description, 6-1
section headings, 6-1

Channel API for LabVIEW, 5-1
description, 5-1
format, 5-1
input and output, 5-1
listing of VIs (table), 5-2
purpose, 5-1
section headings, 5-1

Channel API, using, 4-1
choose which API to use, 3-5
closing CAN Objects, 7-6
common questions, A-3

and troubleshooting, A-1
communicating with other devices on the

CAN bus, A-4

components left after NI-CAN software
uninstall, A-5

determining NI-CAN software
version, A-3

how many CAN interfaces can be
configured, A-3

interrupts required for NI-CAN
cards, A-3

NI-CAN card and power to CAN bus, A-4
problems with NI PCMCIA CAN card

under Windows NT, A-4
troubleshooting with MAX, A-1
using Channel and Frame APIs

simultaneously, A-3
using high-speed and low-speed NI-CAN

cards on the same network, A-3
using multiple PCMCIA cards, A-4
using non-standard baud rates, A-3

communicating with CAN network
starting, 7-5
using objects, 7-5

communication type examples (C function)
periodic polling of remote data, Frame for

C functions (figure), 9-26
polling remote data example using

ncWrite function (figure), 9-25
communication type examples (Frame VIs)

periodic polling of remote data, Frame
VIs (figure), 8-30

communication type examples (VIs)
periodic transmission, Frame VIs

(figure), 8-29
polling remote data using ncWriteObj.vi

(figure), 8-30
communication type examples, Frame API for

C function
example of periodic transmission

(figure), 9-25
CompactPCI, PXI, and RTSI, E-2
configure CAN ports, 2-2
configuring objects

calling ncConfig function, 7-5

Index

© National Instruments Corporation Index-5 NI-CAN Hardware and Software Manual

connector pinouts
high-speed, B-1
low-speed, C-1
RTSI, E-1

connector pinouts, RTSI, E-1
contacting National Instruments, H-1
conventions used in this manual, xiv
CRC error, F-6
CruiseControl message, example of

(figure), 1-5
customer

education, H-1
professional services, H-1
technical support, H-1

Cyclic Redundancy Check (CRC) field, F-4

D
Data Bytes field, F-4
data length code (DLC) field, F-4
developing your application, 3-1
DeviceNet cable-length specifications

(table), B-8
diagnostic resources, H-1
DLC (Data Length Code) field, F-4
documentation

online library, H-1
drivers

instrument, H-1
software, H-1

dual-speed CAN
cabling requirements, D-1

E
embedded processor, 1-3
End of Frame field, F-5
error active

ncReadNet.vi, 8-57
ncReadNetMult.vi, 8-61

error confinement
bus off state, F-8
error active state, F-7
error passive state, F-7

error detection
acknowledgement error, F-6
bit error, F-6
CRC error, F-6
form error, F-6
stuff error, F-6

error message
interrupt resource conflict,

troubleshooting, A-2
memory resource conflict, A-2
NI-CAN hardware problem

encountered, A-3
NI-CAN software problem

encountered, A-2
error passive

ncReadNet.vi, 8-57
ncReadNetMult.vi, 8-61

example code, H-1

F
form error, F-6
FP1300 Configuration, 2-4
Frame API, 1-4

additional programming topics, 7-7
CAN Network Interface Objects,

using with CAN Objects, 7-9
CAN Network Interface Objects,

using with CAN Objects
(figure), 7-10

detecting state changes, 7-11
disabling queues, 7-9
empty queues, 7-8
full queues, 7-9
remote frames, 7-7
RTSI, 7-7

Index

NI-CAN Hardware and Software Manual Index-6 ni.com

state transitions, 7-8
using queues, 7-8

choose which objects to use, 7-1
close objects, 7-6
communicate using objects, 7-5
configuring objects, 7-5
Frame and Channel cannot

simultaneously use same CAN network
interface, 5-33, 5-38, 6-27, 6-32, 8-9,
8-53, 9-9, 9-39

open objects, 7-5
programming model, 7-3

(figure), 7-4
read data, 7-6
start communication, 7-5
using CAN network interface objects, 7-1
using CAN objects, 7-2
wait for available data, 7-6

Frame API for C, 9-1
list of functions (table), 9-3
section headings, 9-1
status codes (table), 9-53

Frame API for LabVIEW, 8-1
CAN Object, 8-1
description, 8-1
format, 8-1
input and output, 8-1
listing of VIs (table), 8-2
purpose, 8-1
section headings, 8-1

Frame API, using, 7-1
frames. See CAN frames
frequently asked questions, H-1
functions

See also NI-CAN functions; Frame API
for C

ncAction, 7-5
ncConfig, 7-5
ncGetAttribute, 7-11
ncOpenObject, 7-5
ncRead, 7-6

H
help

professional services, H-1
technical support, H-1

high-speed CAN
cabling requirements, B-1
port characteristics, G-3

how to use this manual set, xiii

I
Identifier Extension (IDE) field, F-4
installation and configuration, 2-1

CAN channels listed in MAX (figure), 2-3
NI-CAN cards listed in MAX (figure), 2-2
verifying through MAX, 2-1

CAN channels, 2-3
configure CAN ports, 2-2

instrument drivers, H-1
interrupt resource conflict,

troubleshooting, A-2
introduction, 1-1
ISO 11898 standard, F-1

K
KnowledgeBase, H-1

L
LabVIEW, 3-1, 5-1, 8-1

Channel API, 5-1
Frame API, 8-1
listing of VIs for Channel API (table), 5-2

LabVIEW Real-Time (RT)
access CAN database within an

application, 4-3
CAN Write calls, 5-66, 5-67
ncCreateOccur.vi not recommended for

use with, 8-39

Index

© National Instruments Corporation Index-7 NI-CAN Hardware and Software Manual

single-point control applications, CAN
Write.vi, 5-64

software configuration, 2-3
tools, 2-4

LabWindows/CVI, 3-2
low-speed CAN

cabling requirements, C-1
port characteristics for bus-powered

ports, G-3
preparing lead wires of, (figure), C-12
replacing termination resistors, C-11
termination resistors, C-7
termination resistors, location of,

(figure), C-11

M
manual set, how to use, xiii
MAX, 1-3, 1-4

CAN channels listed in MAX (figure), 2-3
NI-CAN cards listed in MAX (figure), 2-2
tools launched from, 2-4

Measurement & Automation Explorer
(MAX). See MAX

memory resource conflict,
troubleshooting, A-2

message, CruiseControl, example of
(figure), 1-5

missing NI-CAN card, troubleshooting, A-1

N
National Instruments

customer education, H-1
professional services, H-1
system integration services, H-1
technical support, H-1
worldwide offices, H-1

NC_ERR_OLD_DATA status code, 7-9
NC_ERR_OVERFLOW status code, 7-9
NC_ST_READ_AVAIL state, 7-8

NC_ST_READ_MULT state, 7-8
NC_ST_WRITE_SUCCESS state, 7-8
ncAction function, 7-5, 9-5

actions supported (table), 9-6
CAN Network Interface Object, 9-6
CAN Object, actions supported

(table), 9-7
ncAction.vi, 8-4
ncCloseObject function, 9-8
ncCloseObject.vi, 8-7
ncConfig function, 7-5, 9-9

CAN Network Interface Object, 9-10
CAN Object, 9-16
communication examples, 9-24
periodic transmission example

(figure), 9-25
polling remote data example using

ncWrite function (figure), 9-25
ncConfigCANNET.vi, 8-9
ncConfigCANNetLS.vi, 8-13
ncConfigCANNetLS-RTSI.vi, 8-18
ncConfigCANNetRTSI.vi, 8-20
ncConfigCANObj.vi, 8-24
ncConfigCANObjRTSI.vi, 8-32
ncCreateNotification function, 9-27
ncCreateOccur.vi, 8-37

not recommended for LabVIEW RT, 8-39
ncGetAttribute function, 7-11, 9-31
ncGetAttribute.vi, 8-41
ncGetHardwareInfo function, 9-35
ncGetHardwareInfo.vi, 8-45
ncGetTimer.vi, 8-50
ncOpenObject function, 7-5, 9-39
ncOpenObject.vi, 8-52
ncRead function, 7-6, 9-41

bus off states, CAN Network Interface
Object

error active, error passive, and bus off
states, 9-45

Index

NI-CAN Hardware and Software Manual Index-8 ni.com

CAN Object,
NCTYPE_CAN_DATA_TIMED field
names (table), 9-46

error active, CAN Network Interface
Object, 9-45

error passive, CAN Network Interface
Object, 9-45

NCTYPE_FRAME_STRUCT data
type, 9-42

ncReadMult function, 9-48
ncReadNet.vi, 8-54

error active, error passive, and bus off
states, 8-57

ncReadNetMult.vi, 8-58
error active, error passive, and bus off

states, 8-61
ncReadObj.vi, 8-62

periodic polling of remote data
(figure), 8-30

periodic transmission, example
(figure), 8-29

polling remote data (figure), 8-30
ncReadObjMult.vi, 8-65
ncReset function, 9-50
ncReset.vi, 8-68
ncSetAttr.vi, 8-70
ncSetAttribute, 9-51
ncStatusToString function, 9-52
nctClear function, 6-4
nctConnectTerminals function, 6-5
nctCreateMessage function, 6-10
nctDisconnectTerminals function, 6-15
nctGetNames function, 6-17
nctGetNamesLength function, 6-19
nctGetProperty function, 6-21
nctInitialize function, 6-27
nctInitStart function, 6-30
nctRead function, 6-34
nctReadTimestamped function, 6-37
nctSetProperty function, 6-40
nctStart function, 6-43

nctStop function, 6-44
nctWrite function, 6-45
NCTYPE_CAN_DATA field names

(table), 9-59
NCTYPE_CAN_DATA_TIMED field names

(table), 9-46
ncWait.vi, 8-72
ncWaitforState function, 9-54
ncWrite function, 9-56

CAN Object
NCTYPE_CAN_DATA field names

(table), 9-59
NCTYPE_CAN_DATA (CAN object

data type), 9-59
NCTYPE_CAN_FRAME (network

interface data type), 9-57
ncWriteNet.vi, 8-75
ncWriteObj.vi, 8-78

periodic polling of remote data
(figure), 8-30

periodic transmission, example
(figure), 8-29

polling remote data (figure), 8-30
NI-CAN

CAN channels listed in MAX (figure), 2-3
Frame API for C

status codes (table), 9-53
hardware overview, 1-2

Channel API, 1-4
Frame API, 1-4
MAX, 1-4

introduction, 1-1
overview, 1-1

simplified CAN data frame
(figure), 1-1

software overview, 1-3
verify hardware installation in MAX

(figure), 2-2
NI-CAN functions

Channel API for C, 6-1
data types (table), 6-2

Index

© National Instruments Corporation Index-9 NI-CAN Hardware and Software Manual

description, details of purpose and
effect, 6-1

format, description, 6-1
input and output, description, 6-1
list of functions (table), 6-3
nctClear function, 6-4
nctConnectTerminals function, 6-5
nctCreateMessage function, 6-10
nctDisconnectTerminals

function, 6-15
nctGetNames function, 6-17
nctGetNamesLength function, 6-19
nctGetProperty function, 6-21
nctInitialize function, 6-27
nctInitStart function, 6-30
nctRead function, 6-34
nctReadTimesatamped

function, 6-37
nctSetProperty function, 6-40
nctStart function, 6-43
nctStop function, 6-44
nctWrite function, 6-45
purpose, description, 6-1
section headings, 6-1

Channel API for LabVIEW
description, 5-1
format, 5-1
input and output, 5-1
purpose, 5-1
section headings, 5-1

Frame API for C
CAN Network Interface Object,

description, 9-1
CAN Object, section definition, 9-1
data types (table), 9-2
description, details of purpose and

effect, 9-1
format, description, 9-1
input and output, description, 9-1
list (table), 9-2, 9-3
list of functions (table), 9-3

ncAction function, 9-5
actions supported (table), 9-6
CAN Network Interface

Object, 9-6
CAN Object, actions supported

(table), 9-7
ncCloseObject function, 9-8
ncConfig function, 9-9

CAN Network Interface
Object, 9-10

CAN Object, 9-16
communication examples, 9-24
periodic polling of remote data

(figure), 9-26
periodic transmission example

(figure), 9-25
polling remote data example

using ncWrite function
(figure), 9-25

ncCreateNotification function, 9-27
ncGetAttribute function, 9-31
ncGetHardwareInfo function, 9-35
ncOpenObject function, 9-39
ncRead function, 9-41

bus off states, CAN Network
Interface Object, 9-45

CAN Object,
NCTYPE_CAN_DATA_TIM
ED field names (table), 9-46

error active, CAN Network
Interface Object, 9-45

error passive, CAN Network
Interface Object, 9-45

NCTYPE_FRAME_STRUCT
data type, 9-42

ncReadMult function, 9-48
ncReset function, 9-50
ncSetAttribute, 9-51
ncStatusToString function, 9-52
ncWaitforState function, 9-54

Index

NI-CAN Hardware and Software Manual Index-10 ni.com

ncWrite function, 9-56
NCTYPE_CAN_DATA (CAN

object data type), 9-59
NCTYPE_CAN_FRAME

(network interface data
type), 9-57

purpose, description, 9-1
Frame API for LabVIEW

CAN Object, 8-1
description, 8-1
format, 8-1
input and output, 8-1
purpose, 8-1

NI-CAN hardware
PCI-CAN/DS series board, 1-2
PCMCIA-CAN series card, 1-2
processor

embedded processor, 1-3
PXI-846x series boards, 1-2

NI-CAN hardware problem encountered,
troubleshooting, A-3

NI-CAN software problem encountered,
troubleshooting, A-2

NI-CAN status
Frame API for C

status codes (table), 9-53
NI-CAN VIs

Channel API for LabVIEW
CAN Clear Multiple Cards with

NI-DAQ.vi, 5-8
CAN Clear with NI-DAQ.vi, 5-6
CAN Connect Terminals.vi, 5-10

valid combinations of
source/destination
(table), 5-14

CAN Create Message.vi, 5-15
CAN Disconnect Terminals.vi, 5-20
CAN Get Names.vi, 5-22
CAN Get Property.vi, 5-25
CAN Init Start.vi, 5-36
CAN Initialize.vi, 5-33

CAN Read.vi, 5-41
CAN Set Property.vi, 5-49
CAN Start.vi, 5-53
CAN Stop.vi, 5-55
CAN Sync Start Multiple Cards with

NI-DAQ.vi, 5-60
CAN Sync Start with

NI-DAQ.vi, 5-57
CAN Write.vi, 5-63
listing of VIs (table), 5-2

Frame API for LabVIEW
listing of VIs (table), 8-2
ncAction.vi, 8-4
ncCloseObject.vi, 8-7
ncConfigCANNET.vi, 8-9
ncConfigCANNetLS.vi, 8-13
ncConfigCANNetLS-RTSI.vi, 8-18
ncConfigCANNetRTSI.vi, 8-20
ncConfigCANObj.vi, 8-24
ncConfigCANObjRTSI.vi, 8-32
ncCreateOccur.vi, 8-37

not recommended for LabVIEW
Real-Time (RT), 8-39

ncGetAttribute.vi, 8-41
ncGetHardwareInfo.vi, 8-45
ncGetTimer.vi, 8-50
ncOpenObject.vi, 8-52
ncReadNet.vi, 8-54
ncReadNetMult.vi, 8-58
ncReadObj.vi, 8-62
ncReadObjMult.vi, 8-65
ncReset.vi, 8-68
ncSetAttr.vi, 8-70
ncWait.vi, 8-72
ncWriteNet.vi, 8-75
ncWriteObj.vi, 8-78

NI-Spy, 2-4
nondestructive bitwise arbitration, F-2

Index

© National Instruments Corporation Index-11 NI-CAN Hardware and Software Manual

number of devices
high-speed CAN, ISO 11898

requirements, B-9
low-speed CAN requirements, C-6

O
online technical support, H-1
opening objects, 7-5

P
PCI-CAN series board

and RTSI, 1-3
PCI-CAN/2 parts locator diagram

(figure), B-5
power supply information for high-speed

CAN ports, B-4
power source jumpers (figure), B-7

specifications, G-1
PCI-CAN/DS series board, 1-2
PCI-CAN/LS series board, 1-2

power supply information for low-speed
CAN ports, C-3

PCI-CAN/LS2 series board, 1-2
parts locator diagram (figure), C-3
power source jumpers, C-5
power supply information for low-speed

CAN ports, C-3
PCMCIA-CAN series card, 1-2

description of cable types, 1-3
PCMCIA-CAN cable (figure), B-3
specifications, G-1

PCMCIA-CAN/LS series card
PCMCIA-CAN/LS cable

(figure), C-2
replacing termination resistors, C-12

periodic polling of remote data, Frame VIs
(figure), 8-30

periodic transmission, Frame API for C
functions, example (figure), 9-25

periodic transmission, Frame VIs, example
(figure), 8-29

phone technical support, H-1
pinout for 9-pin D-sub connector

high-speed (figure), B-1
low-speed (figure), C-1

pins used by PXI-846x series boards, E-3
polling remote data using ncWriteObj.vi

(figure), 8-30
power requirements for the high-speed CAN

physical layer for bus-powered versions
(table), B-7

power requirements for the low-speed CAN
physical layer for bus-powered versions
(table), C-5

power source jumpers (figure), B-7, C-5
power supply

bus power supply requirements
high-speed CAN, B-7
low-speed CAN, C-5

information
high-speed CAN ports, B-4
low-speed CAN ports, C-3

power requirements
high-speed CAN physical layer,

bus-powered versions (table), B-7
low-speed CAN physical layer,

bus-powered versions (table), C-5
power source jumpers (figure), B-7, C-5

processor
embedded processor, 1-3

professional services, H-1
programming

choosing NI-CAN Objects
CAN Network Interface Objects, 7-1
CAN Objects, 7-2

model for NI-CAN applications
closing objects, 7-6
communicating using objects, 7-5
configuring objects, 7-5
opening objects, 7-5

Index

NI-CAN Hardware and Software Manual Index-12 ni.com

reading data, 7-6
starting communication, 7-5
waiting for available data, 7-6

model for NI-CAN Frame API
general program steps (figure), 7-4

queues
disabling queues, 7-9
empty queues, 7-8
full queues, 7-9
read and write queues, 7-8
state transitions, 7-8

programming examples, H-1
programming languages, other (applications

development), 3-4
PXI, CompactPCI, and RTSI, E-2
PXI-8460

fault reporting capabilities, E-2
parts locator diagram (figure), C-4
port characteristics for bus-powered

ports, G-3
replacing termination resistors, C-11
termination resistors

location of, (figure), C-11
preparing lead wires of,

(figure), C-12
PXI-8461

fault reporting capabilities, E-2
parts locator diagram (figure), B-6
port characteristics, G-3

PXI-8462
fault reporting capabilities, E-2

PXI-846x series boards
and RTSI interface, 1-3, E-2
hardware overview, 1-2
pins used by, E-3

Q
queues

disabling queues, 7-9
empty queues, 7-8

full queues, 7-9
read and write queues, 7-8
state transitions, 7-8

R
reading data, 7-6
Real-Time System Integration (RTSI). See

RTSI
related documentation, xiv
Remote Transmit Request (RTR) field, F-4
resistance, determining termination, C-7
resistor

termination
high-speed CAN (figure), B-9
location on PCI-CAN/LS2 board

(figure), C-10
low-speed CAN (figure), C-7
preparing lead wires of replacement

PCI-CAN/LS2 (figure), C-10
PCMCIA-CAN/LS cable

(figure), C-12
replacing

low-speed CAN, C-11
PCI-CAN/LS board, C-10
PCMCIA-CAN/LS cable, C-12

RTSI
bus definition and overview, 1-6
cable, E-3
definition of, 1-3
Frame API programming, 7-7
interface description, E-1, E-2
low-speed CAN, E-2
PCI-CAN series RTSI connector

pinout, E-1
pins used by PXI-846x series boards

(table), E-3
programming, E-3
synchronization to a common trigger, 1-3

RTSI bus
definition, 9-13

Index

© National Instruments Corporation Index-13 NI-CAN Hardware and Software Manual

S
self-test failures, troubleshooting, A-2
SOF (Start of Frame) field, F-3
software

choose which API to use, 3-5
choose your programming language, 3-1

Borland C++, 3-3
LabVIEW, 3-1
LabWindows/CVI, 3-2
other programming languages, 3-4
Visual C++ 6, 3-2

developing your application, 3-1
LabVIEW Real-Time (RT)

tools, 2-4
LabVIEW Real-Time (RT),

configuration, 2-3
software drivers, H-1
source/destination, valid combinations of in

CAN Connect Terminals.vi (table), 5-14
specifications

DeviceNet cable-length specifications
(table), B-8

PCI-CAN series board, G-1
PCMCIA-CAN series card, G-1

standard for CAN, F-1
Start of Frame (SOF) field, F-3
state transitions, queues, 7-8
status codes (table), 9-53
stuff error, F-6
summary of the CAN standard, F-1
support

technical, H-1
system integration services, H-1

T
technical support, H-1
telephone technical support, H-1
termination resistance, determining, C-7

termination resistor
location on PCI-CAN/LS2 board

(figure), C-10
placement (figure), B-9
placement for low-speed CAN

(figure), C-7
preparing lead wires

PCMCIA-CAN/LS cable
replacement (figure), C-12

preparing lead wires of replacement
PCI-CAN/LS (figure), C-10

replacing
PCI-CAN/LS board, C-10
PCMCIA-CAN/LS cable, C-12

termination resistors
location of, low-speed CAN

(figure), C-11
preparing lead wires of, low-speed CAN

(figure), C-12
Test Panel, 2-4
training

customer, H-1
troubleshooting

and common questions, A-1
interrupt resource conflict, A-2
memory resource conflict, A-2
missing NI-CAN card, A-1
NI-CAN software problem encountered,

A-2, A-3
self-test failures, A-2
with MAX, A-1

troubleshooting resources, H-1

U
using this manual set, xiii

V
VIs. See NI-CAN VIs
Visual C++ 6, 3-2

Index

NI-CAN Hardware and Software Manual Index-14 ni.com

W
waiting for available data, 7-6
Web

professional services, H-1
technical support, H-1

worldwide technical support, H-1

	NI-CAN Hardware and Software Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	How to Use the Manual Set
	Conventions Used in This Manual
	Related Documentation

	Chapter 1 Introduction
	CAN Overview
	Figure 1-1. Simplified CAN Data Frame

	NI-CAN Hardware Overview
	NI-CAN Software Overview
	MAX
	Frame API
	Channel API
	Figure 1-2. Example of CruiseControl Message

	RTSI Bus Overview
	The RTSI Solution

	Chapter 2 Installation and Configuration
	Verify Installation of Your CAN Hardware
	Figure 2-1. NI-CAN Cards Listed in MAX
	Configure CAN Ports
	CAN Channels
	Figure 2-2. CAN Channels in MAX

	LabVIEW Real-Time (RT) Configuration
	Tools

	Chapter 3 Developing Your Application
	Choose Your Programming Language
	LabVIEW
	LabWindows/CVI
	Visual C++ 6
	Borland C/C++
	Other Programming Languages

	Choose Which API To Use

	Chapter 4 Using the Channel API
	Choose Source of Channel Configuration
	Figure 4-1. Decision Process for Choosing Source of Channel Configuration
	Already Have a CAN Database File?
	Application Uses a Subset of Channels?
	Import CAN Database into MAX
	Access CAN Database within Application
	User Must Create within Application?
	Use Create Message Function in Application
	Create in MAX

	Basic Programming Model
	Figure 4-2. Basic Programming Model for Channel API
	Init Start
	Read
	sample rate = 0
	Figure 4-3. Example of Read with sample rate = 0
	sample rate > 0
	Figure 4-4. Example of Read with sample rate > 0

	Read Timestamped
	Figure 4-5. Example of Read Timestamped

	Write
	sample rate = 0
	Figure 4-6. Example of Write with sample rate = 0
	sample rate > 0
	Figure 4-7. Example of Write with sample rate > 0

	Clear

	Additional Programming Topics
	Get Names
	Synchronization
	Set Property

	Chapter 5 Channel API for LabVIEW
	Section Headings
	List of VIs
	Table 5-1. Channel API for LabVIEW VIs

	CAN Clear.vi
	CAN Clear with NI-DAQ.vi
	CAN Clear Multiple with NI-DAQ.vi
	CAN Connect Terminals.vi
	Table 5-2. Valid Combinations of Source/Destination

	CAN Create Message.vi
	CAN Disconnect Terminals.vi
	CAN Get Names.vi
	CAN Get Property.vi
	CAN Initialize.vi
	CAN Init Start.vi
	CAN Read.vi
	CAN Set Property.vi
	CAN Start.vi
	CAN Stop.vi
	CAN Sync Start with NI-DAQ.vi
	CAN Sync Start Multiple with NI-DAQ.vi
	CAN Write.vi

	Chapter 6 Channel API for C
	Section Headings
	Data Types
	Table 6-1. NI-CAN Channel API for C, Data Types

	List of Functions
	Table 6-2. NI-CAN Channel API for C Functions

	nctClear
	nctConnectTerminals
	Table 6-3. Valid Combinations of Source/Destination

	nctCreateMessage
	nctDisconnectTerminals
	nctGetNames
	nctGetNamesLength
	nctGetProperty
	nctInitialize
	nctInitStart
	nctRead
	nctReadTimestamped
	nctSetProperty
	nctStart
	nctStop
	nctWrite

	Chapter 7 Using the Frame API
	Choose Which Objects To Use
	Using CAN Network Interface Objects
	Using CAN Objects

	Programming Model
	Figure 7-1. Programming Model for NI-CAN Frame API
	Step 1. Configure Objects
	Step 2. Open Objects
	Step 3. Start Communication
	Step 4. Communicate Using Objects
	Step 4a. Wait for Available Data
	Step 4b. Read Data

	Step 5. Close Objects

	Additional Programming Topics
	RTSI
	Remote Frames
	Using Queues
	State Transitions
	Empty Queues
	Full Queues
	Disabling Queues
	Using the CAN Network Interface Object with CAN Objects
	Figure 7-2. Flowchart for CAN Frame Reception

	Detecting State Changes

	Chapter 8 Frame API for LabVIEW
	Section Headings
	List of VIs
	Table 8-1. Frame API for LabVIEW VIs

	ncAction.vi
	Table 8-2. Actions Supported by the CAN Network Interface Object
	Table 8-3. Actions Supported by the CAN Object

	ncCloseObject.vi
	ncConfigCANNet.vi
	ncConfigCANNetLS.vi
	ncConfigCANNetLS-RTSI.vi
	ncConfigCANNetRTSI.vi
	ncConfigCANObj.vi
	Figure 8-1. Example of Periodic Transmission
	Figure 8-2. Example of Polling Remote Data Using ncWriteObj.vi
	Figure 8-3. Example of Periodic Polling of Remote Data

	ncConfigCANObjRTSI.vi
	ncCreateOccur.vi
	ncGetAttr.vi
	ncGetHardwareInfo.vi
	ncGetTimer.vi
	ncOpenObject.vi
	ncReadNet.vi
	ncReadNetMult.vi
	ncReadObj.vi
	ncReadObjMult.vi
	ncReset.vi
	ncSetAttr.vi
	ncWait.vi
	ncWriteNet.vi
	ncWriteObj.vi

	Chapter 9 Frame API for C
	Section Headings
	Data Types
	Table 9-1. NI-CAN Frame API for C, Data Types

	List of Functions
	Table 9-2. NI-CAN Frame API for C Functions

	ncAction
	Table 9-3. Actions Supported by the CAN Network Interface Object
	Table 9-4. Actions Supported by the CAN Object

	ncCloseObject
	ncConfig
	Figure 9-1. Example of Periodic Transmission
	Figure 9-2. Example of Polling Remote Data Using ncWrite
	Figure 9-3. Example of Periodic Polling of Remote Data

	ncCreateNotification
	ncGetAttribute
	ncGetHardwareInfo
	ncOpenObject
	ncRead
	Table 9-5. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_DATA (0)
	Table 9-6. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_COMM_ERR (2)
	Table 9-7. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_RTSI (3)
	Table 9-8. NCTYPE_CAN_DATA_TIMED Field Names

	ncReadMult
	ncReset
	ncSetAttribute
	ncStatusToString
	Table 9-9. NI-CAN Status Codes

	ncWaitForState
	ncWrite
	Table 9-10. NCTYPE_CAN_FRAME Fields for FrameType NC_FRMTYPE_DATA (0)
	Table 9-11. NCTYPE_CAN_FRAME fields for FrameType NC_FRMTYPE_REMOTE (1)
	Table 9-12. NCTYPE_CAN_DATA Field Name

	Appendix A Troubleshooting and Common Questions
	Appendix B Cabling Requirements for High-Speed CAN
	Figure B-1. Pinout for 9-Pin D-Sub Connector
	Figure B-2. Pinout for 5-Pin Combicon-Style Pluggable Screw Terminal
	Figure B-3. PCMCIA-CAN Cable
	Figure B-4. Parts Locator Diagram
	Figure B-5. PCI-CAN/2 Parts Locator Diagram
	Figure B-6. PXI-8461 Parts Locator Diagram
	Figure B-7. Power Source Jumpers
	Table B-1. Power Requirements for the CAN Physical Layer for Bus-Powered Versions
	Table B-2. ISO 11898 Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires
	Table B-3. DeviceNet Cable Length Specifications
	Figure B-8. Termination Resistor Placement
	Figure B-9. Cabling Example

	Appendix C Cabling Requirements for Low-Speed CAN
	Figure C-1. Pinout for 9-Pin D-Sub Connector
	Figure C-2. PCMCIA-CAN/LS Cable
	Figure C-3. PCI-CAN/LS2 Parts Locator Diagram
	Figure C-4. PXI-8460 Parts Locator Diagram
	Figure C-5. Power Source Jumpers
	Table C-1. Power Requirements for the Low-Speed CAN Physical Layer for Bus-Powered Versions
	Table C-2. Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires
	Figure C-6. Termination Resistor Placement for Low-Speed CAN
	Figure C-7. Location of Termination Resistors on PCI-CAN/LS2 Board
	Figure C-8. Preparing Lead Wires of Replacement Resistors
	Figure C-9. Location of Termination Resistors on a PXI-8460
	Figure C-10. Preparing Lead Wires of Replacement Resistors
	Figure C-11. Preparing Lead Wires of PCMCIA-CAN/LS Cable Replacement Resistors
	Figure C-12. Cabling Example

	Appendix D Cabling Requirements for Dual-Speed CAN
	Appendix E RTSI Bus
	Figure E-1. PCI-CAN Series RTSI Connector Pinout
	Table E-1. Pins Used By the PXI-846x Series Boards

	Appendix F Summary of the CAN Standard
	Figure F-1. Example of CAN Arbitration
	Figure F-2. Standard and Extended Frame Formats

	Appendix G Specifications
	Appendix H Technical Support and Professional Services
	Glossary
	A
	B-C
	D-E
	F-I
	K-M
	N
	O-P
	R
	S
	T-V
	W

	Index
	Numerics
	A
	B-C
	D-F
	H-L
	M-N
	O-P
	Q-R
	S-V
	W

